First, we wish to show that
A
∪
(
B
∩
C
)
⊂
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)\subset (A\cup B)\cap (A\cup C)}
. Let
x
∈
A
∪
(
B
∩
C
)
{\displaystyle x\in A\cup (B\cap C)}
. Then
x
∈
A
{\displaystyle x\in A}
or
x
∈
B
∩
C
{\displaystyle x\in B\cap C}
.
Case 1:
x
∈
A
{\displaystyle x\in A}
x
∈
A
⊂
A
∪
B
{\displaystyle x\in A\subset A\cup B}
so that
x
∈
A
∪
B
{\displaystyle x\in A\cup B}
x
∈
A
⊂
A
∪
C
{\displaystyle x\in A\subset A\cup C}
so that
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
x
∈
A
∪
B
{\displaystyle x\in A\cup B}
and
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
so that
x
∈
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle x\in (A\cup B)\cap (A\cup C)}
Case 2:
x
∈
B
∩
C
{\displaystyle x\in B\cap C}
x
∈
B
{\displaystyle x\in B}
and
x
∈
C
{\displaystyle x\in C}
x
∈
B
⊂
A
∪
B
{\displaystyle x\in B\subset A\cup B}
so that
x
∈
A
∪
B
{\displaystyle x\in A\cup B}
x
∈
C
⊂
A
∪
C
{\displaystyle x\in C\subset A\cup C}
so that
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
x
∈
A
∪
B
{\displaystyle x\in A\cup B}
and
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
so that
x
∈
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle x\in (A\cup B)\cap (A\cup C)}
Since in both cases,
x
∈
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle x\in (A\cup B)\cap (A\cup C)}
, we know that
A
∪
(
B
∩
C
)
⊂
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)\subset (A\cup B)\cap (A\cup C)}
Now we wish to show that
(
A
∪
B
)
∩
(
A
∪
C
)
⊂
A
∪
(
B
∩
C
)
{\displaystyle (A\cup B)\cap (A\cup C)\subset A\cup (B\cap C)}
. Let
x
∈
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle x\in (A\cup B)\cap (A\cup C)}
. Then
x
∈
A
∪
B
{\displaystyle x\in A\cup B}
and
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
.
Case 1a:
x
∈
A
{\displaystyle x\in A}
x
∈
A
⊂
A
∪
(
B
∩
C
)
{\displaystyle x\in A\subset A\cup (B\cap C)}
, so
x
∈
A
∪
(
B
∩
C
)
{\displaystyle x\in A\cup (B\cap C)}
Case 1b:
x
∈
B
{\displaystyle x\in B}
We can't actually conclude anything we want with just this, so we have to also to consider the case
x
∈
A
∪
C
{\displaystyle x\in A\cup C}
.
Case 2a:
x
∈
A
{\displaystyle x\in A}
: [see Case 1a]
Case 2b:
x
∈
C
{\displaystyle x\in C}
We now have
x
∈
B
{\displaystyle x\in B}
and
x
∈
C
{\displaystyle x\in C}
so that
x
∈
B
∩
C
{\displaystyle x\in B\cap C}
Of course, since
x
∈
B
∩
C
⊂
A
∪
(
B
∩
C
)
{\displaystyle x\in B\cap C\subset A\cup (B\cap C)}
, it follows that
x
∈
A
∪
(
B
∩
C
)
{\displaystyle x\in A\cup (B\cap C)}
. Since both cases 2a and 2b yield
x
∈
A
∪
(
B
∩
C
)
{\displaystyle x\in A\cup (B\cap C)}
, we know that it follows from 1b.
Since in both cases 1a and 1b,
x
∈
A
∪
(
B
∩
C
)
{\displaystyle x\in A\cup (B\cap C)}
, we know that
(
A
∪
B
)
∩
(
A
∪
C
)
⊂
A
∪
(
B
∩
C
)
{\displaystyle (A\cup B)\cap (A\cup C)\subset A\cup (B\cap C)}
.
Since both
A
∪
(
B
∩
C
)
⊂
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)\subset (A\cup B)\cap (A\cup C)}
and
(
A
∪
B
)
∩
(
A
∪
C
)
⊂
A
∪
(
B
∩
C
)
{\displaystyle (A\cup B)\cap (A\cup C)\subset A\cup (B\cap C)}
, it follows (finally) that
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)=(A\cup B)\cap (A\cup C)}
.
--will continue later, feel free to refine it if you feel it can be--