File:VFPt metal balls plusminus potential+contour.svg

Original file(SVG file, nominally 800 × 600 pixels, file size: 200 KB)

Summary

Description
English: Electric field around two identical conducting spheres at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V and uniformely spaced equipotential lines are shown.
Date
Source Own work
Author Geek3
Other versions
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
Source code
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.3
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_plusminus_potential+contour',
    commons=True, width=800, height=600, center=[400, 300], unit=u)

# define two spheres with position, radius and charge
s1 = {'p':array([-1.5, 0.]), 'r':1.0}
s2 = {'p':array([1.5, 0.]), 'r':1.0}
spheres = s1, s2

# make charge proportional to capacitance, which is proportional to radius.
s1['Q'] = s1['r']
s2['Q'] = -s2['r']
d = vabs(s2['p'] - s1['p'])
v12 = vnorm(s2['p'] - s1['p'])

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
charges = [{'x':s1['p'][0], 'y':s1['p'][1], 'Q':s1['Q']},
           {'x':s2['p'][0], 'y':s2['p'][1], 'Q':s2['Q']}]
r1 = r2 = 0.
q1, q2 = s1['Q'], s2['Q']
q0 = max(fabs(q1), fabs(q2))
for i in range(10):
    q1, q2 = -s1['r'] * q2 / (d - r2), -s2['r'] * q1 / (d - r1), 
    r1, r2 = s1['r']**2 / (d - r2), s2['r']**2 / (d - r1)
    p1, p2 = s1['p'] + r1 * v12, s2['p'] - r2 * v12
    charges.append({'x':p1[0], 'y':p1[1], 'Q':q1})
    charges.append({'x':p2[0], 'y':p2[1], 'Q':q2})
    if max(fabs(q1), fabs(q2)) < 1e-3 * q0:
        break

field = Field([ ['monopole', c] for c in charges ])

U1 = field.V(s1['p'] - s1['r'] * array([1., 0.]))
U2 = field.V(s2['p'] + s2['r'] * array([1., 0.]))
doc.draw_scalar_field(func=field.V, cmap=doc.cmap_AqYlFs, vmin=U2, vmax=U1)
doc.draw_contours(func=field.V, linewidth=1, linecolor='#111111',
    levels=sc.linspace(U2, U1, 11)[1:-1], attributes={'opacity':'0.7'})

# draw symbols
for c in charges:
    doc.draw_charges(Field([ ['monopole', c] ]), scale=0.6*sqrt(fabs(c['Q'])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ccc', 0.75),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

for si, s in enumerate(spheres):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(si+1),
        'transform':'translate({:.3f},{:.3f})'.format(*(s['p'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':s['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    s['cgroup'] = doc.draw_object('g', {'style':'stroke-width:0.02'}, group=ball)

# find start positions of field lines
def start(t):
    phi = 2. * pi * t
    return array(s1['p']) + 1.5 * array([cos(phi), sin(phi)])

# draw the field lines
nlines = 24
p0_list = Startpath(field, start).npoints(nlines)
for iline in range(nlines):
    line = FieldLine(field, p0_list[iline], directions='both', maxr=1e4)
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2 / u, 4 / u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2 / u, 4 / u)
    for si, s in enumerate(spheres):
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if vabs(line.get_position(ci) - s['p']) < s['r']:
                # find the point where the field line cuts the surface
                t = optimize.brentq(lambda t: vabs(line.get_position(t)
                    - s['p']) - s['r'], 0., 1.)
                pr = line.get_position(t) - s['p']
                cpos = 0.9 * s['r'] * vnorm(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=s['cgroup'])
    
    pot = []
    if iline != 6 and iline != nlines - 1 - 6:
        pot.append(0.)
    if iline >= 6 and iline < nlines - 6:
        pot += [0.27 * U1 + 0.73 * U2, 0.73 * U1 + 0.27 * U2]
    
    doc.draw_line(line, linewidth=2.4, arrows_style={'at_potentials':pot})

doc.write()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

16 December 2020

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:26, 16 December 2020Thumbnail for version as of 12:26, 16 December 2020800 × 600 (200 KB)Geek3Uploaded own work with UploadWizard

The following page uses this file:

Metadata