File:Interior of fat basilica ( parbolic) Julia set.png

Original file(2,000 × 2,000 pixels, file size: 334 KB, MIME type: image/png)

Summary

Description
English: Interior of fat basilica ( parbolic) Julia set: internal Levels sets and chesboard
Date
Source Own work
Author Adam majewski
Other versions

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

c source code

  • File 10009.156.pgm saved . Comment = Interior: both Levels sets and chesboard
  • procedure : SaveArray2PGMFile (data, iHeight+9.0+radius, "Interior: both Levels sets and chesboard ");
/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  

  https://plus.google.com/116648956837292097606/posts/b6J6z2u8soL






  how to show sepals inside main box of parabolic chessboard ?
  - compute full orbit ( forward and backward of every point)
  - for each whole orbit ( not point) compute maximal distance from orbit to fixed point alfa
  - normalize distance ( dustance/ distance max ) so it will have value from 0 to 1.0
  _ use such normalized distance for coloring
  - then one can see orbits 
  ==========================================

  -------------------------------
  cd existing_folder
  git init
  git remote add origin git@gitlab.com:adammajewski/SepalsOfCauliflower.git
  git add .
  git commit
  git push -u origin master
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 

  gcc b.c -lm -Wall -march=native 
  time ./a.out


  gcc b.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt

  ----------------------

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>

/* --------------------------------- global variables and consts ------------------------------------------------------------ */

// https://mrob.com/pub/muency/child.html
int ChildPeriod = 2; 		// Period of secondary component joined by root point with the parent component
int ParentPeriod = 1;		// main cardioid of Mandelbrot set    



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.6;	//-0.05;
static const double ZxMax =  1.6;	//0.75;
static const double ZyMin = -1.6;	//-0.1;
static const double ZyMax =  1.6;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c;		// parameter of function fc(z)=z^2 + c
double complex a; // alfa fixed point


static unsigned long int iterMax = 1000000;	//iHeight*100;

static double ER = 2.0;		// Escape Radius for bailout test 
static double ER2;

double radius; //=  1.0-cabs(1.0-csqrt(1.0-4.0*c)) ; //0.1; // half of distance between critical point and fixed point

//double D2MaxGlobal;	//= 0.0497920256372717 ;
//double DistanceMaxGlobal2  ;

/* colors = shades of gray from 0 to 255 */

static unsigned char iColorOfExterior = 250;
static unsigned char iColorOfInterior = 60;
unsigned char ColorStep; // (240- iColorOfInterior)/ChildPeriod
unsigned char iColorOfUnknown = 50;




int NoOfUnknownPoints = 0;


/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------

/* 
   c functions using complex type numbers
   computes c from  component  of Mandelbrot set */
complex double Give_c( int Period,  int p, int q , double InternalRadius )
{
  
  complex double w;  // point of reference plane  where image of the component is a unit disk 
 // alfa = ax +ay*i = (1-sqrt(d))/2 ; // result 
  double t; // InternalAngleInTurns
  
  t  = (double) p/q; 
  t = t * M_PI * 2.0; // from turns to radians
  
  w = InternalRadius*cexp(I*t); // map to the unit disk 
  
  switch ( Period ) // of component 
    {
    case 1: // main cardioid = only one period 1 component
      c = w/2 - w*w/4; // https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Mandelbrot_set/boundary#Solving_system_of_equation_for_period_1
      break;
    case 2: // only one period 2 component 
      c = (w-4)/4 ; // https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Mandelbrot_set/boundary#Solving_system_of_equation_for_period_2
      break;
      // period > 2 
    default: 
      printf("higher periods : to do, use newton method \n");
      printf("for each q = Period of the Child component  there are 2^(q-1) roots \n");
      c = 10000.0; // bad value 
       
      break; }
  return c;
}


// compute alfa fixed point
// https://en.wikipedia.org/wiki/Periodic_points_of_complex_quadratic_mappings#Period-1_points_(fixed_points)
complex double GiveAlfa(complex double c)
{
	// d=1-4c 
	// alfa = (1-sqrt(d))/2 
	return (1.0-csqrt(1.0 - 4.0*c))/2.0 ;

}



// angle in turns
// https://en.wikipedia.org/wiki/Turn_(geometry)
double GiveTurn( double complex z){
double t;

  t =  carg(z);
  t /= 2*M_PI; // now in turns
  if (t<0.0) t += 1.0; // map from (-1/2,1/2] to [0, 1) 
  return (t);
}

// fast cabs
double cabs2(complex double z) {
  return (creal(z) * creal(z) + cimag(z) * cimag(z));
}



// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}



/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// bailout test
// escapes = abs(z)> ER
int Escapes(complex double z){

  if (cabs2(z)>ER2) return 1;
  return 0;
}

int IsInTarget(complex double z){
  // here target set is a circle inside immediate basin component containing  critical point 
  // with fixed  point on it's boundary
  // attracting petal
  complex double center = a+radius;
  

  if (cabs(z-center) <= radius) return 1;
  return 0;
	
}

// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax, ER2)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}





// ***************************************************************************************************************************
// ************************** Interior : components of Immediate Basin of Attraction *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfImmediateBasin(complex double z){



  int nMax = iterMax;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration

    if (Escapes(z)) return iColorOfExterior;
    if (IsInTarget(z)) return iColorOfInterior + (n % ChildPeriod)* ColorStep;	// immediate basin of attraction and it's preimages 
  			
   
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  printf("unknown point : z = %.16f; %.16f\n", creal(z), cimag(z));
  NoOfUnknownPoints +=1;
  return iColorOfUnknown;
}



// plots raster point (ix,iy) 
int DrawPointOfImmediateBasin (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfImmediateBasin(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfImmediateBasin (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, iColorOfUnknown)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		//printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfImmediateBasin(A, ix, iy);	//  
  }

  return 0;
}





// *******************************************************************************************************
//******************** Interior:  Level Sets of Attraction time ******************************************
// *******************************************************************************************************
unsigned char ComputeColorOfInteriorLevelSets(complex double z){

  int nMax = iterMax;
	
  int n;
  int p;
  int pMax = ChildPeriod; // 

  for (n=0; n < nMax; n++){ //forward iteration

    if (Escapes(z)) return iColorOfExterior;
    for (p=0; p < pMax; p++){ //forward iteration
      	if (IsInTarget(z)) return iColorOfInterior + (n % ChildPeriod)* ColorStep;	// immediate basin of attraction and it's preimages 
      	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
    }
  }
  //
  printf("unknown point : z = %.16f; %.16f\n", creal(z), cimag(z));
  NoOfUnknownPoints +=1;
  return iColorOfUnknown;
}


// plots raster point (ix,iy) 
int DrawPointOfInteriorLevelSets (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfInteriorLevelSets(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImageOfInteriorLevelSets (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  //printf("compute image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, iColorOfUnknown)
  for (iy = iyMin; iy <= iyMax; ++iy){
    //printf (" %d from %d \r", iy, iyMax);	//info 
    for (ix = ixMin; ix <= ixMax; ++ix)
      DrawPointOfInteriorLevelSets(A, ix, iy);	//  
  }

  return 0;
}



//******************** Interior:  chessboard  ******************************************
// *******************************************************************************************************
unsigned char ComputeColorOfChessboard (complex double z){

  int nMax = iterMax;
	
  int n;
  int p;
  int pMax = ChildPeriod; // 

  for (n=0; n < nMax; n++){ //forward iteration

    if (Escapes(z)) return iColorOfExterior;
    for (p=0; p < pMax; p++){ //forward iteration
      	if (IsInTarget(z)) 
      		{if (cimag(z)>0.0) 
      			return 20 ;	//  above critical orbit
      			else return 243;	//  below critical orbit 
      			}
      	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
    }
  }
  //
  printf("unknown point : z = %.16f; %.16f\n", creal(z), cimag(z));
  NoOfUnknownPoints +=1;
  return iColorOfUnknown;
}


// plots raster point (ix,iy) 
int DrawPointOfChessboard  (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfChessboard(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImageOfChessboard  (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  //printf("compute image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, iColorOfUnknown)
  for (iy = iyMin; iy <= iyMax; ++iy){
    	//printf (" %d from %d \r", iy, iyMax);	//info 
    	for (ix = ixMin; ix <= ixMax; ++ix)
      		DrawPointOfChessboard(A, ix, iy);	//  
  }

  return 0;
}






// ************************************************************************************
//******************** Interior:  both Levels sets and chesboard ******************************************
// *******************************************************************************************************
unsigned char ComputeColorOfBoth (complex double z){

  int nMax = iterMax;
	
  int n;
  int p;
  int pMax = ChildPeriod; // 
  double angle; // in turns 
  unsigned char color;

  for (n=0; n < nMax; n++){ //forward iteration

    if (Escapes(z)) return iColorOfExterior;
    for (p=0; p < pMax; p++){ //
      	if (IsInTarget(z)) 
      		{ 
      		  
      		  angle = GiveTurn(z - a); // now in (0,1) range
      		  
      		  // !!!!!!
      		  //if (angle> 7.0/8.0 ) angle = (angle)*8.0;
      		  //if (angle<1.0/8.0)  
      		  angle = angle*4.0; // repeated gradient
      		  //printf("angle = %.16f\n", angle);
      		  color = angle* 255; // now in (0,255) range
      		  return color;
      			}
      	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
    }
  }
  //
  printf("unknown point : z = %.16f; %.16f\n", creal(z), cimag(z));
  NoOfUnknownPoints +=1;
  return iColorOfUnknown;
}


// plots raster point (ix,iy) 
int DrawPointOfBoth  (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBoth(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImageOfBoth  (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  // radius /=10.0;	
  //printf("compute image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, iColorOfUnknown)
  for (iy = iyMin; iy <= iyMax; ++iy){
    	//printf (" %d from %d \r", iy, iyMax);	//info 
    	for (ix = ixMin; ix <= ixMax; ++ix)
      		DrawPointOfBoth(A, ix, iy);	//  
  }

  return 0;
}
















// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.3f", k); /*  */
  char *filename =strncat(name,".pgm", 4);
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}




int info ()
{

  
  // display info messages
  printf ("Numerical approximation of parabolic Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  printf ("is a root point between period %d and %d components \n", ChildPeriod, ParentPeriod);
  printf ("alfa fixed point z = ( %.16f ; %.16f ) \n", creal(a), cimag(a));
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  printf("radius of attracting circular petal = %.16f\n", radius);
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  printf("NoOfUnknownPoints  = %d NoOfAllPoints = %d so ratio unknown/all = %f \n", NoOfUnknownPoints, iSize, (double) NoOfUnknownPoints/ iSize);
  return 0;
}


// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start\n");
  c = Give_c(ParentPeriod, 1, ChildPeriod, 1.0);
  a = GiveAlfa(c); // -0.5; //  alfa fixed point
  radius =  cabs(c)/4.8 ; // choose such value that level sets cross at z=0
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((float) iWidth / (float) iHeight);	// it should be 1.000 ...
	
  

  
  ER2 = ER * ER; // for numerical optimisation in iteration
	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
	
  ColorStep =  (243 - iColorOfInterior)/(ChildPeriod-1);
  if (ColorStep <1) {printf("error from setup : ColorStep < 0 ; It should be greater\n"); return 1; } // check
  
  printf (" end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  info ();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  // ******************************** components O f immediate basin **********************************************************
  DrawImagerOfImmediateBasin(data);
  SaveArray2PGMFile (data, iHeight, "Interior : components of immediate basin of attraction (IBA) and it's preimages");
  //
  ComputeBoundaries(data,edge);
  SaveArray2PGMFile (edge, iHeight+1.0, "only boundary of components");
  //
  CopyBoundaries(edge,data);
  SaveArray2PGMFile (data, iHeight+2.0, "components with boundaries");
  	
   // ***************** attraction time ***************************************************
  DrawImageOfInteriorLevelSets (data);
  SaveArray2PGMFile (data, iHeight+3.0+radius, "Interior: level sets of attraction time to the parabolic fixed point");
  //
  ComputeBoundaries(data,edge);
  SaveArray2PGMFile (edge, iHeight+4.0+radius, "only boundaries of level sets");
  //
  CopyBoundaries(edge,data);
  SaveArray2PGMFile (data, iHeight+5.0+radius, "level sets with boundaries");
  	
  // ***************** parabolic chessboard ***************************************************
  DrawImageOfChessboard(data);
  SaveArray2PGMFile (data, iHeight+6.0+radius, "Interior : parabolic chessboard");
  //
   ComputeBoundaries(data,edge);
  SaveArray2PGMFile (edge, iHeight+7.0+radius, "only boundaries of parabolic chessboard");
  //
  CopyBoundaries(edge,data);
  SaveArray2PGMFile (data, iHeight+8.0+radius, "parabolic chessboard with boundaries");
  
   // *****************  Interior:  both Levels sets and chesboard ***************************************************
  DrawImageOfBoth(data);
  SaveArray2PGMFile (data, iHeight+9.0+radius, "Interior:  both Levels sets and chesboard ");
  
  
  
  
  end();

  return 0;
}

text output

setup start
 end of setup 
File 10000.000.pgm saved . Comment = Interior : components of immediate basin of attraction (IBA) and it's preimages 
File 10001.000.pgm saved . Comment = only boundary of components 
File 10002.000.pgm saved . Comment = components with boundaries 
File 10003.156.pgm saved . Comment = Interior: level sets of attraction time to the parabolic fixed point 
File 10004.156.pgm saved . Comment = only boundaries of level sets 
File 10005.156.pgm saved . Comment = level sets with boundaries 
File 10006.156.pgm saved . Comment = Interior : parabolic chessboard 
File 10007.156.pgm saved . Comment = only boundaries of parabolic chessboard 
File 10008.156.pgm saved . Comment = parabolic chessboard with boundaries 
File 10009.156.pgm saved . Comment = Interior:  both Levels sets and chesboard  
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of parabolic Julia set for fc(z)= z^2 + c 
parameter c = ( -0.7500000000000000 ; 0.0000000000000001 ) 
is a root point between period 2 and 1 components 
alfa fixed point z = ( -0.5000000000000000 ; 0.0000000000000001 ) 
Image Width = 3.200000 in world coordinate
PixelWidth = 0.000320 
radius of attracting circular petal = 0.1562500000000000
Maximal number of iterations = iterMax = 1000000 
ratio of image  = 1.000000 ; it should be 1.000 ...
NoOfUnknownPoints  = 0 NoOfAllPoints = 100000000 so ratio unknown/all = 0.000000 

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 December 2018

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:03, 2 December 2018Thumbnail for version as of 12:03, 2 December 20182,000 × 2,000 (334 KB)Soul windsurferUser created page with UploadWizard

The following page uses this file:

Metadata