File:Dynamic plane for parabolic parameter from period 2 thru internal angle 1 over 2.png

Original file(2,000 × 1,000 pixels, file size: 715 KB, MIME type: image/png)

Summary

Description
English: Dynamic plane with parabolic Julia set for c = -1.25. It is the root point between period 2 component and period 4 component. Angled internal adress
Date
Source Own work
Author Adam majewski

Compare with

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

C source code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  fraktal.republika.pl

  c console progam 

  gcc c.c -lm -Wall -march=native 
  time ./a.out


  gcc c.c -lm -Wall -march=native -fopenmp

  method of filling gaps in rays turns 
  should be the same as for drawing rays !!!!!!!!!!!!!

  !!!!!---------- algorithm ---------!!!!!!!!
  trap ( target set) for iteration :
  * of interior points = interior of circle centered at alfa and radius = dMaxDistance2Alfa, with iPeriodChild sectors described by periodic external rays landing on alfa
  * of exterior points = exterior of circle centered at origin ( z=0) and radius = ER
  Iterate point until it fails to one of 2 traps.
  If it it fail into interior trap then check in which sector is it. Color = number of sector

  Interior target set should be all inside Julia set 
  ( of course not counting external rays that cross it and exterior parts which are very thin = means width < pixelwidth)
  if it is a circle around alfa then it shrinks as iPeriodOfChild grows
  ( = time of creating image grows)
  -----------------------------------------
  Better is to take as a interior target set :
  part of this circle bordered by 2 external rays 
  (One can choose the longest one !!!)
  and color the interior proportionaly to 
  (i % iPeriodOfChild)


  gcc c.c -lm -Wall -march=native

  ./a.out



  without openmp
  real	7m54.710s
  user	7m54.861s
  sys	0m0.008s

  with openmp : 
  real	1m47.034s
  user	14m8.420s
  sys	0m0.280s







*/

#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also 
#include <complex.h>
#include <omp.h>

/* --------------------------------- global variables and consts ------------------------------------------------------------ */

#define iPeriodChild 4 // Period of secondary component joined by root point with the parent component 
int iPeriodParent = 2; // main cardioid of Mandelbrot set



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax ; //
static unsigned int iWidth ; // horizontal dimension of array

static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax ; //

static unsigned int iHeight = 5000; //  
// The size of array has to be a positive constant integer 
static unsigned int iSize ; // = iWidth*iHeight; 

// memmory 1D array 

unsigned char *data; // fatou components
unsigned char *julia; // julia set = common edge between fatou components
unsigned char *edge; //  pther edges 
unsigned char *zero; // zero algorithm

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax ; // = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array

/* world ( double) coordinate = dynamic plane */
static   const double ZxMin=-1.8;
static  const double ZxMax=1.8;
static  const double ZyMin=-0.9;
static  const double ZyMax=0.9;
static  double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static  double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static  double ratio ;
 

// complex numbers of parametr plane 
double Cx; // c =Cx +Cy * i
double Cy;
double complex c; // parameter of function fc(z)=z^2 + c



static unsigned long int iterMax  = 10000; //iHeight*100;

static double ER = 2.0; // Escape Radius for bailout test 
static double ER2;

/* colors = shades of gray from 0 to 255 */
// 8 bit color = int number from 0 to 255


// Arrays are 0-indexed, so the first array element is at index = 0, and the highest is =(size_of_array – 1) 
//unsigned char iColorInterior[2][iPeriodChild]={{255,231}, {123,99}}; /* shades of gray used in image */
unsigned char iColors[4]={240,200,160, 120}; //
static unsigned char iColorOfExterior = 245;
// static unsigned char iColorOfInterior = 200;
unsigned char iColorOfUnknown = 100;
int iNumberOfUknknown = 0;

// period 2 cycle = {Zx2a, Zx2b} , Zy = 0 
double Zx2a = -1.207106781186548;
double Zx2b = 0.207106781186547;

// limits : Zx2aMinus < Zx2a < Zx2aPlus < Zx2bMinus < Zx2b < Zx2bPlus
double Zx2aMinus; 
double Zx2bMinus;
double Zx2aPlus; 
double Zx2bPlus;


//static double TwoPi=2*M_PI;


/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------


// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx(unsigned int ix)
{ return (ZxMin + ix*PixelWidth );}

// uses globaal cons
double GiveZy(unsigned int iy)
{ return (ZyMax - iy*PixelHeight);} // reverse y axis

/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i(unsigned int ix, unsigned int iy)
{ return ix + iy*iWidth; }

// plots raster point (ix,iy) 
int iDrawPoint(unsigned char A[], unsigned int ix, unsigned int iy, unsigned char iColor)
{ 

  /* i =  Give_i(ix,iy) compute index of 1D array from indices of 2D array */
  A[Give_i(ix,iy)] = iColor;

  return 0;
}

// draws point to memmory array data
// uses complex type so #include <complex.h> and -lm 
int dDrawPoint(unsigned char A[], complex double point,unsigned char iColor )
{

  unsigned int ix, iy; // screen coordinate = indices of virtual 2D array
  //unsigned int i; // index of 1D array
  
  ix = (creal(point)- ZxMin)/PixelWidth; 
  iy = (ZyMax - cimag(point))/PixelHeight; // inverse Y axis 
  iDrawPoint(A, ix, iy, iColor);
  return 0;
}



//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

int setup(int ParentPeriod, int ChildPeriod)
{

  
  
  
  
  
  printf("setup\n");

  ratio = (ZxMax-ZxMin)/(ZyMax-ZyMin);

  
  Cx=-1.25;
  Cy=0.0;
  c=Cx+Cy*I;
  
  

  /* 2D array ranges */
  if (!(iHeight % 2)) iHeight+=1; // it sholud be even number (variable % 2) or (variable & 1)
  iWidth = ratio*iHeight;
  iSize = iWidth*iHeight; // size = number of points in array 
  // iy
  iyMax = iHeight - 1 ; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix
  
  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize-1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax-ZxMin)/ixMax; //  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax-ZyMin)/iyMax;
  ratio = ((ZxMax-ZxMin)/(ZyMax-ZyMin))/((float)iWidth/(float)iHeight); // it should be 1.000 ...
  
  

  // for numerical optimisation in iteration
  ER2 = ER * ER;
  
  //
  Zx2bMinus = Zx2b - 0.2;
  Zx2aMinus = Zx2a - 0.2;  
  Zx2bPlus = Zx2b + 0.2;
  Zx2aPlus = Zx2a + 0.2;  

  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc( iSize * sizeof(unsigned char) );
  edge = malloc( iSize * sizeof(unsigned char) );
  julia = malloc( iSize * sizeof(unsigned char) );
  zero = malloc( iSize * sizeof(unsigned char) );

  if (edge== NULL || data == NULL || zero==NULL || julia ==NULL)
    {
      fprintf(stderr," Could not allocate memory");
      getchar(); 
      return 1;
    }

  
  

 
  

  
   
  
  printf(" end of setup \n");
  
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

unsigned char ComputeColor(unsigned int ix, unsigned int iy, int IterationMax)
{ 
  // check behavour of z under fc(z)=z^2+c
  // using 1 target set:
  // 1. exterior or circle (center at origin and radius ER ) 
  // as a target set containing infinity = for escaping points ( bailout test)
  // for points of exterior of julia set
  

  double Zx2, Zy2;
  int i=0;  // number of the iteration = fc(z)
  
 
  double Zx, Zy;
  
 
 
  
  
  // from screen to world coordinate 
  Zx = GiveZx(ix);
  Zy = GiveZy(iy);
  

  // if not inside target set around attractor ( alfa fixed point )
  while (1 )
    { // then iterate 
      
      Zx2 = Zx*Zx; 
      Zy2 = Zy*Zy;
       
      // bailout test 
      if (Zx2 + Zy2 > ER2) return iColorOfExterior; // if escaping stop iteration
       
      // if not escaping or not attracting then iterate = check behaviour
      // new z : Z(n+1) = Zn * Zn  + C
      Zy = 2*Zx*Zy + Cy; 
      Zx = Zx2 - Zy2 + Cx; 
      //
      i+=1;
      if (i > IterationMax) break; 
      
     
       
                  
	  
    }
    

  if (Zx2aMinus < Zx && Zx < Zx2a )     return iColors[0];
  if (Zx2a      < Zx && Zx < Zx2aPlus ) return iColors[1];
  if (Zx2bMinus < Zx && Zx < Zx2b )     return iColors[2];
  if (Zx2b      < Zx && Zx < Zx2bPlus ) return iColors[3];
      
    
  iNumberOfUknknown +=1; 
  return   iColorOfUnknown;   //
}

// plots raster point (ix,iy) 
int PlotPoint(unsigned char A[] , unsigned int ix, unsigned int iy, int IterationMax)
{
  unsigned i; /* index of 1D array */
  unsigned char iColor;
  

  i = Give_i(ix,iy); /* compute index of 1D array from indices of 2D array */
  iColor = ComputeColor(ix, iy, IterationMax);
  A[i] = iColor;

  return 0;
}



int FillArrayWithColor(unsigned char A[], unsigned char color )
{
  int i;
  for(i = 0; i <= iSize; ++i) A[i]=color; 
  return 0;


}

// fill array 
// uses global var :  ...
// scanning complex plane 
int ComputeFatouComponents(unsigned char A[], int IterationMax )
{
  unsigned int ix, iy; // pixel coordinate 

  //printf("compute image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(ixMax , iyMax, IterationMax)
  for(iy = iyMin; iy<=iyMax; ++iy) 
    { printf(" %d z %d \r", iy, iyMax); //info 
      for(ix= ixMin; ix<=ixMax; ++ix) PlotPoint(A, ix, iy, IterationMax ) ; //  
    } 
   
  return 0;
}




// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax, ER2)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}


 
 
int DrawCriticalOrbit(unsigned char A[], unsigned int IterMax)
{
  // integer = pixel coordinate
  unsigned int ix, iy; 
  // double = world coordinate
  // critical point Z= Zx+ZY*i;
  double Zx=0.0;
  double Zy=0.0; 
  double Zx2=0.0;
  double Zy2=0.0;
  
  unsigned int i; /* index of 1D array */
  unsigned int j; // number of iteration
 
 
  // draw critical point  
  ix = (int)((Zx-ZxMin)/PixelWidth);
  iy = (int)((ZyMax-Zy)/PixelHeight); // reverse y axis
  i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
  A[i]=255-A[i]; 
 
  // iterate
  for (j = 1; j <= IterMax; j++) //larg number of iteration s
    {  Zx2 = Zx*Zx; 
      Zy2 = Zy*Zy;
 
      // bailout test 
      if (Zx2 + Zy2 > ER2) return iColorOfExterior; // if escaping stop iteration
 
      // if not escaping iterate
      // Z(n+1) = Zn * Zn  + C
      Zy = 2*Zx*Zy + Cy; 
      Zx = Zx2 - Zy2 + Cx;
      //compute integer coordinate  
      ix = (int)((Zx-ZxMin)/PixelWidth);
      iy = (int)((ZyMax-Zy)/PixelHeight); // reverse y axis
      i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
      A[i]=0; //255-A[i];   // mark the critical orbit
 
    }
  return 0;
}

// Check Orientation of image : mark first quadrant 
// it should be in the upper right position
// uses global var :  ...
int CheckOrientation(unsigned char A[] )
{
  unsigned int ix, iy; // pixel coordinate 
  double Zx, Zy; //  Z= Zx+ZY*i;
  unsigned i; /* index of 1D array */
  for(iy=iyMin;iy<=iyMax;++iy) 
    {
      Zy = GiveZy(iy);
      for(ix=ixMin;ix<=ixMax;++ix) 
	{

	  // from screen to world coordinate 
	  Zx = GiveZx(ix);
	  i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
	  if (Zx>0 && Zy>0) A[i]=255-A[i];   // check the orientation of Z-plane by marking first quadrant */

	}
    }
   
  return 0;
}

unsigned char ComputeColorZero(unsigned int ix, unsigned int iy, int iMax)
{ 
  // check behavour of z under fc(z)=z^2+c
  // using 1 target set:
  // 1. exterior or circle (center at origin and radius ER ) 
  // as a target set containing infinity = for escaping points ( bailout test)
  // for points of exterior of julia set
  

  double Zx2, Zy2;
  int i;  // number of the iteration = fc(z)
  
  unsigned char iColor;
  double Zx, Zy;
  
 
 
  i = 0;
  
  // from screen to world coordinate 
  Zx = GiveZx(ix);
  Zy = GiveZy(iy);
  

  
  while (i <iMax) 
    { // then iterate 
      
      Zx2 = Zx*Zx; 
      Zy2 = Zy*Zy;
       
             
      // if not escaping or not attracting then iterate = check behaviour
      // new z : Z(n+1) = Zn * Zn  + C
      Zy = 2*Zx*Zy + Cy; 
      Zx = Zx2 - Zy2 + Cx; 
      //

      i+=1;
    }
  //
  if (  Zy>0) iColor = 150; //re(z_n) > 0 and im(z_n) > 0 (first quadrant)
  // if ( Zx<0 && Zy>0) iColor = 170; //re(z_n) < 0 and im(z_n) > 0 (second)
  //if ( Zx<0 && Zy<0) iColor = 190; //re(z_n) < 0 and im(z_n) < 0 (third)
  if (  Zy<0) iColor = 200; //re(z_n) > 0 and im(z_n) < 0 (fourth).
  //
  return iColor;  
}


// plots raster point (ix,iy) 
int PlotPointZero(unsigned char A[] , unsigned int ix, unsigned int iy, int n)
{
  unsigned i; /* index of 1D array */
  unsigned char iColor;
  

  i = Give_i(ix,iy); /* compute index of 1D array from indices of 2D array */
  iColor = ComputeColorZero(ix, iy, n);
  // mark Fatou components, first interior 
  if (data[i]==iColors[0] || data[i]==iColors[1] || data[i]==iColors[2] || data[i]==iColors[3] )
    A[i] =  iColor+15; // !!! 
  else // exterior
    {if (n<10) A[i]= iColor; else A[i]= iColorOfExterior;} // exterior , only for low n 

  return 0;
}

// fill array 
// uses global var :  ...
// scanning complex plane 
int ComputeZerosOfQnc(unsigned char A[], int n)
{
  unsigned int ix, iy; // pixel coordinate 

  //printf("compute image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(ixMax , iyMax, n)
  for(iy = iyMin; iy<=iyMax; ++iy) 
    { printf(" %d z %d \r", iy, iyMax); //info 
      for(ix= ixMin; ix<=ixMax; ++ix) PlotPointZero(A, ix, iy, n ) ; //  
    } 
   
  return 0;
}
 

// save "A" array to pgm file 
int SaveArray2PGMFile( unsigned char A[], double k)
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [30]; /* name of file */
  sprintf(name,"%.0f", k); /*  */
  char *filename =strcat(name,".pgm");
  char *comment="# ";/* comment should start with # */

  /* save image to the pgm file  */      
  fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode  */
  fprintf(fp,"P5\n %s\n %u %u\n %u\n",comment,iWidth,iHeight,MaxColorComponentValue);  /*write header to the file*/
  fwrite(A,iSize,1,fp);  /*write A array to the file in one step */
  printf("File %s saved. \n", filename);
  fclose(fp);

  return 0;
}

int info()
{
  // diplay info messages
  printf("Numerical approximation of parabolic Julia set for fc(z)= z^2 + c \n");
  printf("iPeriodParent = %d \n", iPeriodParent);
  printf("iPeriodOfChild  = %d \n", iPeriodChild);
  printf("parameter c = ( %f ; %f ) \n", Cx, Cy); 
  
  printf("Image Width = %f \n", ZxMax-ZxMin);
  printf("PixelWidth = %f \n", PixelWidth);
  printf("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf("iNumberOfUknknown  = %d \n", iNumberOfUknknown);
  printf("ratio of image  = %f \n", ratio);

  return 0;
}

/* -----------------------------------------  main   -------------------------------------------------------------*/
int main()
{
  setup(iPeriodParent, iPeriodChild);
  int n; 

 
   
    
 
  printf("components of Fatou set  : \n");
  ComputeFatouComponents(data, iterMax);
  SaveArray2PGMFile( data, 10000); 
  printf("done \n");

  ComputeBoundaries(data, julia);
  SaveArray2PGMFile( julia, 20000); 
  printf(" Julia set \n");
  CopyBoundaries(julia, data);
  SaveArray2PGMFile( data, 30000);



  
  
  for(n = 0; n<=25; ++n)
    { 
      ComputeZerosOfQnc(zero, n);
      ComputeBoundaries(zero,edge);
      CopyBoundaries(julia, edge); // julia is computed more precisely then edge 
      CopyBoundaries(edge, zero);
      SaveArray2PGMFile( zero, n); 
    }
  
 
 

  printf(" allways free memory  to avoid buffer overflow \n");
 
  free(data);
  free(edge);
  free(zero);
  free(julia);

  
  info();

  return 0;
}

Image Magic src code

This big image is downsized with Image Magic console tool :

convert d.pgm -resize 2000x1000 d.png

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

5 December 2015

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:31, 5 December 2015Thumbnail for version as of 18:31, 5 December 20152,000 × 1,000 (715 KB)Soul windsurferUser created page with UploadWizard

The following page uses this file:

Metadata