Straw Bale Construction/Resources/Technical Studies

Technical Studies, Reports and TestsEdit

GeneralEdit

English slides from the Danish report
Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Slide show of Danish results

AcousticsEdit

Air-sound-insulation of clay plastered non-loadbearing sb-wall
In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Air-sound-insulation of clay plastered non-loadbearing sb-wall

InsulationEdit

Thermal Performance of Straw Bale Wall Systems
"In this analysis we provide a summary of the results of research that has been done, examine the implications of each to residential thermal comfort, and suggest a reasonable thermal performance value for plastered straw bale walls as a synthesis of the data." Nehemiah Stone, USA, 2003. Thermal Performance of Straw Bale Wall Systems PDF ?Kb. This document is made available by the Ecological Building Network, for which they request a donation.
The Rice Hull House
"The rice hulls are unique within nature. They contain approximately 20% opaline silica in combination with a large amount of the phenyl propanoid structural polymer called lignin. This abundant agricultural waste has all of the properties one could ever expect of some of the best insulating materials. Recent ASTM testing conducted R&D Services of Cookville, Tennessee, reveals that rice hulls do not flame or smolder very easily ..." Paul A. Olivier, USA, 2004 The Rice Hull House (PDF 225Kb)

Thermal insulation of earthplastered sb-wall, bale lying flat

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Thermal insulation of earthplastered sb-wall, bale lying flat

Thermal insulation of earthplastered sb-wall, bale on edge

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Thermal insulation of earthplastered sb-wall, bale on edge

Thermal insulation of non plastered straw bale, on edge, flat, two different densities

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Thermal insulation of non plastered straw bale, on edge, flat, two different densities

Thermal insulation of mussell shells, three different densities

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Thermal insulation of mussell shells, three different densities

Fire SafetyEdit

Summary of New Mexico ASTM E-119 Small Scale Fire Tests On Straw Bale Wall Assemblies
This American document is a compilation of information regarding testing done by SHB Agra Engineering and Environmental Services Laboratory in Albuquerque, New Mexico in 1993. Small Scale Fire Tests (PDF 262 KB)
Straw Bale Fire Safety
The ability of plastered and unplastered straw bale walls to resist fire is presented, based on a number of tests and field reports to date. Field and laboratory experience show plastered bale walls to be highly resistant to fire damage, flame spread and combustion. Bob Theis, 2003. Straw Bale Fire Safety (PDF 100 KB)
ASTM E84-98 Surface Burning Characteristics report
Report prepared for Katrina Hayes by Omega Point Laboratories in 2000 (USA). Surface Burning Characteristics report (PDF 452 KB)
Fire test of clay as a surface cover material
In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. Fire test of clay as a surface cover material
30min fire test of clay plastered non-loadbearing sb-wall
In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. 30min fire test of clay plastered non-loadbearing sb-wall

Building CodesEdit

City of Cortex Straw Bale Code (Colorado, USA)
The City of Cortex ordinance which Dion Hollenbeck scanned and converted to html. City of Cortex Straw Bale Code
California Straw Bale Code (USA)
This code is from 1995 and has some very general requirements for bearing and non-load bearing constructions, there are also notes on fire safety requirements. California Straw Bale Code (PDF 18 KB)
Austin Straw Bale Code (Texas, USA)
Austin Straw Bale Code (PDF 18 KB)
Boulder Straw Bale Code (Colorado, USA)
The purpose of this chapter is to establish minimum prescriptive standards of safety for the construction of structures which use baled straw as a load bearing or non-load bearing material. This code was added to existing legislation in 1981. Boulder Straw Bale Code (PDF 16 KB)
Tucson/Pima County SB Code (Arizona, USA)
Tucson/Pima County SB Code (PDF 22 KB)

Construction StrengthEdit

A Pilot Study examining the Strength, Compressibility and Serviceability of Rendered Straw Bale Walls for Two Storey Load Bearing Construction.
"A pilot study of a wall constructed from straw bales was carried out. The objective was to examine the suitability of such walls for two-storey residential construction. The emphases were placed on the strength, compressibility and serviceability of the rendered straw bale wall. The full-scale wall was tested to failure in laboratory conditions. The result shows that it is feasible to construct a two-storey wall using such system. The test results were compared with the recommendation provided by some of the codes of practice. It was found that the wall has adequate capacity for a two-storey wall construction. Other issues, such as constructability, detailing, and compressibility were also examined in this paper." Michael Faine and Dr. John Zhang, University of Western Sydney, Australia, 2000 Rendered Straw Bale Walls for Two Storey Load Bearing Construction (PDF 507Kb)
Compression load testing straw bale walls
Peter Walker, Dept. Architecture & Civil Engineering, University of Bath, England, 2004. Compression load testing straw bale walls (PDF )
Settling of non-loadbearing and loadbearing sb-walls after two moisture cycles
In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. [Settling of non-loadbearing and loadbearing sb-walls after two moisture cycles http://www.by-og-byg.dk/download/pdf/423-8d.pdf]
Load-bearing straw bale construction
One hundred years of experience with load-bearing plastered straw bale structures, along with a number of laboratory tests worldwide, show these wall systems to be capable of supporting substantial service loads. When properly baled, stacked, and detailed, and plastered both sides with cement, lime, or earthen renders, straw bale walls can support at least residential scale loads, and meet typical building code criteria for strength, serviceability, creep, and durability. Bruce King, USA, 2003. Load-bearing straw bale construction (PDF). This document is made available by the Ecological Building Network, for which they request a donation.
Structural Testing of Plasters for Straw Bale Construction
Over the past hundred years, plastered straw bale construction has shown itself to be strong and durable in both load-bearing and post-and-beam structures. In load-bearing straw bale systems, the relatively strong, stiff plaster plays a significant role as it works together with the ductile straw bale core to function as a stress skin panel, resisting compressive, in-plane and out-ofplane loading. Kelly Lerner and Kevin Donahue, USA, 2003. Structural Testing of Plasters for Straw Bale Construction. This document is made available by the Ecological Building Network, for which they request a donation.
Creep in Bale Walls
The tests are aimed at determining the vertical creep or settlement of various bale walls loaded vertically for 12 months. In the base group are two stacks of 6 unplastered rice 3- string bales which are tested with uniform low (100plf) and high (400plf) loads. Dan Smith, USA, 2003. Creep in Bale Walls (PDF). This document is made available by the Ecological Building Network, for which they request a donation.
Testing of Straw Bale Walls with out of Plane Loads
3-string rice-straw bales (16” x 24” x 4’-0”) laid flat and stacked to create 2’x4’x8’ straw bale walls plastered with 1” stucco, 2” earth plaster or unplastered were loaded out-of-plane as follows: air-pressure was added to a 4’x8’ plastic waterbed bladder placed in a 2” gap between a 4’x8’ 2x10@16” stud wall with 3/4” plywood both sides. Kevin Donahue, USA, 2003. Testing of Straw Bale Walls with out of Plane Loads. This document is made available by the Ecological Building Network, for which they request a donation.
In-Plane Cyclic Tests of Plastered Straw Bale Wall Assemblies
The construction and testing of six full-scale plastered straw bale wall assemblies is described in this report. The specimens consisted of three cement stucco skinned walls and three earth plaster skinned walls representing varying levels of reinforcement detailing. All walls were tested in-plane under either cyclic or monotonic lateral loadings. Measured behavior is presented in this report, along with recommendations for future work. Cale Ash, Mark Aschheim and David Mar, USA (date unknown). In-Plane Cyclic Tests of Plastered Straw Bale Wall Assemblies. This document is made available by the Ecological Building Network, for which they request a donation.
Design Approach for Load-Bearing Strawbale Walls
"In addition to presenting background information about loadbearing strawbale wall systems this paper presents the results of a series of tests conducted to gain more insight into the various parameters needed for the design of strawbale structures. These parameters include: dead load behaviour, bale response to over time, shear between straw and stucco, and axial load capacity of the stucco skin. Based on the test results the paper presents a design example for comparison of test values with design values." Kris J. Dick, M.G. (Ron) Britton. For presentation at the AIC 2002 Meeting CSAE/SCGR Program Saskatoon, Saskatchewan July 14 - 17, 2002. Design Approach for Load-Bearing Strawbale Walls
The Effects of Plastered Skin Confinement on the Performance of Straw Bale Wall Systems
"This project will continue this investigation and will include the results of compressive tests of confined straw bale specimens. It will also include an evaluation of construction details for confining skins, and how further research can clarify which techniques are most beneficial when building straw bale structures." Adrianne Wheeler, David Riley and Thomas Boothby. Pennsylvania State University Summer Research Opportunities Program 2004 The Effects of Plastered Skin Confinement on the Performance of Straw Bale Wall Systems

MoistureEdit

Straw Bale House Moisture Research
"Researchers and builders do not know how well straw bale walls deal with moisture. What happens if you build with wet straw? Does it dry out over time? Is straw naturally better able to deal with water than building products such as wood? Will house humidity levels affect straw bale walls—especially during long Canadian winters? Would a vapour barrier help? If rain wets the stucco, does the straw underneath get wet? How do you keep the wall dry by a window when there is no drainage plane behind the stucco to carry the water away?" Canada Mortgage and Housing Corporation. The report is from before 2003 Straw Bale House Moisture Research
Pilot Study of Moisture Control in Stuccoed Straw Bale Walls
This study was made for the Canada Mortgage and Housing Corporation by Bob Platts of Fibrehouse Limited, USA, 1997. Moisture Control in Stuccoed Straw Bale Walls. Pilot Study of Moisture Control in Stuccoed Straw Bale Walls
Monitoring the Hygrothermal Performance of Strawbale Walls
"A California winery, interested in quality buildings and sustainable action, commissioned the construction of a large strawbale building to be used as a tasting room, barrel storage room, and tank farm on a site adjoining one of their vineyards. They offered access to this unique building for a comprehensive enclosure wall monitoring program." John Straube and Chris Schumacher, USA, 2003. Monitoring the Hygrothermal Performance of Strawbale Walls (PDF). This document is made available by the Ecological Building Network, for which they request a donation.
How Straw Decomposes: Implications for Straw Bale Construction
"Straw is a natural fiber that can last many thousands of years under certain conditions. Intact straw has been found in dry Egyptian tombs and buried in layers of frozen glacial ice. However, under typical conditions straw will slowly degrade as do all natural fiber materials like wood, paper, cotton fabric, etc." Matthew D. Summers, Sherry L. Blunk and Bryan M. Jenkins, USA, 2003. How Straw Decomposes (PDF). This document is made available by the Ecological Building Network, for which they request a donation.
Moisture properties of straw and plaster/straw assemblies
"This report is a draft summary of the results of the moisture property testing of a range of plaster types that might be installed over strawbale walls. It reviews the literature for previous data, describes the test protocols, and summarizes the results." John Straube, USA (date unknown). Moisture properties of straw and plaster/straw assemblies. This document is made available by the Ecological Building Network, for which they request a donation.
Water vapour transmission properties of clay plaster with various surface treatments / additives
In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. [Water vapour transmission properties of clay plaster with various surface treatments / additives http://www.by-og-byg.dk/download/pdf/423-8a.pdf]

Water vapour transmission properties of straw

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. [Water vapour transmission properties of straw http://www.by-og-byg.dk/download/pdf/423-8b.pdf]

Moisture accumulation of sb-walls plastered with clay plaster on the inside (warm side) and clay plaster or lime plaster on the outside (cold side)

In Danish only, direct translation requests to user:DuLithgow. Part of "Straw Bale Houses - design and material properties" prepared by Jørgen Munch-Andersen, Birte Møller Andersen and Danish Building and Urban Research. [moisture accumulation of sb-walls plastered with clay plaster on the inside (warm side) and clay plaster or lime plaster on the outside (cold side) http://www.by-og-byg.dk/download/pdf/423-8c.pdf]
Humidity in straw bale walls and its effect on the decomposition of straw
Jakub Wihan explores the physics of moisture in walls in relation to the degradation of straw. He considers practical experience through case studies of straw bale houses and compares simple design calculations with computer simulation. The conclusions are compared to knowledge from 27 cases by professional straw bale builders to give guidelines for future work. Humidity in straw bale walls and its effect on the decomposition of straw

Studies in other languagesEdit

French

Utilisation de la Paille en Parois de Maisons Individuelles a Ossature Bois
"Le programme de recherche comporte le suivi technique de la construction, l'expérimentation du comportement thermique des logements et de l'humidité au sein des parois, ainsi que la détermination en laboratoire des caractéristiques des matériaux et la validation technique de ces procédés constructifs." Alain Grelat, 2004

Utilisation de la Paille en Parois de Maisons Individuelles a Ossature Bois (PDF 824Kb)

Danish

Halmhuse - Udformning og materialeegenskaber
"Laster, Længderetning, Tværretning, Halmhuse og dagslys, Varmeakkumulering, Fugtakkumulering, Lufttæthed og dampspærre, Forebyggelse af svampeangreb, Tage, Varmeisolering, Brand, Tagdækning, Skivevirkning, Terrændæk, Vinduer, Fundamenter, Ydervægge, Fugt, Trækonstruktion, Rundtømmerløsning, Skjult konstruktion, Rammekonstruktion, Muslingeskaller, Varmeisolering for halmvægge." Jørgen Munch-Andersen og Birte Møller Andersen, 2004

Halmhuse - Udformning og materialeegenskaber (PDF 3.0MB)

German

Mikrobielle Empfindlichkeit von Bau-Strohballen
"Im Zuge des zunehmenden Umweltbewußtseins der Bevölkerung hat sich auch ein umweltbewußtes Wohnen verbreitet. Viele legen mehr Wert auf ein gesundes Raumklima da sie begreifen, dass sie einen Großteil ihres Leben in ihren Wohnungen zubringen. Zudem hat es in der letzten Zeit eine Reihe von Umweltskandalen gegeben die zu einem Umdenken geführt haben. Die Folge war eine Hinwendung zu Bauprodukten die sowohl gesundheits- als auch umweltschonend sind. Diese Entwicklung wurde und wird auch von der Bundesregierung gefördert (Gütesiegel Natureplus). Zur diesen Produkten gehören vor allem auch Dämmstoffe aus nachwachsenden Rohstoffen. In diesem Bereich wurde in den letzten 10 Jahren viel Forschungsarbeit geleistet u diese Materialien konkurrenzfähig gegenüber konventionellen Dämmstoffen zu machen." Hansjörg Wieland, 2004

Mikrobielle Empfindlichkeit von Bau-Strohballen (PDF 408KB)

Last modified on 15 November 2008, at 21:27