# Real Analysis/Symbols

We begin with listing various sets of numbers that are important in mathematical analysis.

 $\mathbb{N}$ or N The natural numbers $\mathbb{Z}$ or Z The integers $\mathbb{Q}$ or Q The rational numbers $\mathbb{R}$ or R The real numbers $\mathbb{C}$ or C The complex numbers

 $\forall$ For all $\exists$ Exists/There Exists $\subseteq,\subset$ Subset, Proper Subset $\supseteq,\supset$ Superset, Proper Superset $\in$ Belongs to $\setminus$ Set Subtraction $\cup$ Union $\cap$ Intersection $|x|$ Absolute value $\sup$ Supremum/Least Upper Bound $\inf$ Infimum/Greatest Lower Bound $\emptyset,\phi$ Empty Set

 $\Alpha,\alpha$ Alpha $\Beta,\beta$ Beta $\Gamma,\gamma$ Gamma $\Delta,\delta$ Delta $\Epsilon,\epsilon$ Epsilon $\Zeta,\zeta$ Zeta $\Eta,\eta$ Eta $\Theta,\theta$ Theta $\Iota,\iota$ Iota $\Kappa,\kappa$ Kappa $\Lambda,\lambda$ Lambda $\Mu,\mu$ Mu $\Nu,\nu$ Nu $\Xi,\xi$ Xi $O,o$ Omicron $\Pi,\pi$ Pi $\Rho,\rho$ Rho $\Sigma,\sigma$ Sigma $\Tau,\tau$ Tau $\Upsilon,\upsilon$ Upsilon $\Phi,\phi$ Phi $\Chi,\chi$ Chi $\Psi,\psi$ Psi $\Omega,\omega$ Omega
Last modified on 15 April 2013, at 14:42