Introduction to Astrophysics/Neutron Stars

A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with slightly larger mass than protons. Neutron stars are very hot and are supported against further collapse by quantum degeneracy pressure due to the Pauli exclusion principle. This principle states that no two neutrons (or any other fermionic particles) can occupy the same place and quantum state simultaneously.

A typical neutron star has a mass between about 1.4 and 3.2 solar masses with a corresponding radius of about 12 km if the Akmal–Pandharipande–Ravenhall equation of state (APR EOS) is used.In contrast, the Sun's radius is about 60,000 times that. Neutron stars have overall densities predicted by the APR EOS of 3.7×1017 to 5.9×1017 kg/m3 (2.6×1014 to 4.1×1014 times the density of the Sun), which compares with the approximate density of an atomic nucleus of 3×1017 kg/m3. The neutron star's density varies from below 1×109 kg/m3 in the crust, increasing with depth to above 6×1017 or 8×1017 kg/m3 deeper inside (denser than an atomic nucleus). This density is approximately equivalent to the mass of a Boeing 747 compressed to the size of a small grain of sand, or the human population condensed to the size of a sugar cube.

In general, compact stars of less than 1.44 solar masses – the Chandrasekhar limit – are white dwarfs, and above 2 to 3 solar masses (the Tolman–Oppenheimer–Volkoff limit), a quark star might be created; however, this is uncertain. Gravitational collapse will usually occur on any compact star between 10 and 25 solar masses and produce a black hole.[10] Some neutron stars rotate very rapidly and emit beams of electromagnetic radiation as pulsars.

Last modified on 18 December 2012, at 14:24