# Diagram typesEdit

## 2D diagramsEdit

• parameter is a variable on horizontal axis
• bifurcation diagram : P-curves ( = periodic points) versus parameter[1]
• orbit diagram : points of critical orbit versus parameter
• skeleton diagram ( critical curves = q-curves)
• Lyapunow diagram : Lyapunov exponent versus parameter
• multiplier diagrams : multiplier of periodic orbit versus parameter
• constant parameter diagrams
• cobweb diagram or a Verhulst diagram [2] = Graphical iteration
• Iterates versus time diagram[3] = connected scatter graph = time series
• invariant density diagram , histogram [4], the distribution of the orbit[5], frequency distribution [6] = power spectrum [7]

# MapsEdit

## Logistic mapEdit

Logistic map [8][9]

Bash code [10] Javascript code from Khan Academy [11] MATLAB code:

```r_values = (2:0.0002:4)';
iterations_per_value = 10;
y = zeros(length(r_values), iterations_per_value);
y0 = 0.5;
y(:,1) = r_values.*y0*(1-y0);
for i = 1:iterations_per_value-1
y(:,i+1) = r_values.*y(:,i).*(1-y(:,i));
end
plot(r_values, y, '.', 'MarkerSize', 1);
grid on;
```

Maxima CAS code [13]

```/* Logistic diagram by Mario Rodriguez Riotorto using Maxima CAS draw packag  */
pts:[];
for r:2.5 while r <= 4.0 step 0.001 do /* min r = 1 */
(x: 0.25,
for k:1 thru 1000 do x: r * x * (1-x), /* to remove points from image compute and do not draw it */
for k:1 thru 500  do (x: r * x * (1-x), /* compute and draw it */
pts: cons([r,x], pts))); /* save points to draw it later, re=r, im=x */
draw2d( terminal   = 'png,
file_name = "v",
dimensions = [1900,1300],
title      = "Bifurcation diagram, x[i+1] = r*x[i]*(1 - x[i])",
point_type = filled_circle,
point_size = 0.2,
color = black,
points(pts));
```

### Better imageEdit

Bifurcation diagram of the logistic map

"The horizontal axis is the r parameter, the vertical axis is the x variable. The image was created by forming a 1601 x 1001 array representing increments of 0.001 in r and x. A starting value of x=0.25 was used, and the map was iterated 1000 times in order to stabilize the values of x. 100,000 x -values were then calculated for each value of r and for each x value, the corresponding (x,r) pixel in the image was incremented by one. All values in a column (corresponding to a particular value of r) were then multiplied by the number of non-zero pixels in that column, in order to even out the intensities. Values above 250,000 were set to 250,000, and then the entire image was normalized to 0-255. Finally, pixels for values of r below 3.57 were darkened to increase visibility."

• tips from learner.org [14]

### Lyapunov exponentEdit

• code in Matlab[15]

### Invariant MeasureEdit

An invariant measure or probability density in state space [16]

Lyapunov exponent - image and Maxima CAS code

Great images by Chip Ross[18]

For $x_{n+1}=x_n^2-c$, the code in MATLAB can be written as:

```c = (0:0.001:2)';
iterations_per_value = 100;
y = zeros(length(c), iterations_per_value);
y0 = 0;
y(:,1) = y0.^2 - c;
for i = 1:iterations_per_value-1
y(:,i+1) = y(:,i).^2 - c;
end
plot(c, y, '.', 'MarkerSize', 1, 'MarkerEdgeColor', 'black');
```

Maxima CAS code for drawing real quadratic map : $f_c(z) = z^2 + c$ :

```/* based on the code by by Mario Rodriguez Riotorto */
pts:[];
for c:-2.0 while c <= 0.25 step 0.001 do
(x: 0.0,
for k:1 thru 1000 do x: x * x+c, /* to remove points from image compute and do not draw it */
for k:1 thru 500  do (x:  x * x+c, /* compute and draw it */
pts: cons([c,x], pts))); /* save points to draw it later, re=r, im=x */
draw2d( terminal   = 'svg,
file_name = "b",
dimensions = [1900,1300],
title      = "Bifurcation diagram, x[i+1] = x[i]*x[i] +c",
point_type = filled_circle,
point_size = 0.2,
color = black,
points(pts));

```

### Lyapunov exponentEdit

```program lapunow;

{ program draws bifurcation diagram y[n+1]=y[n]*y[n]+x,} { blue}
{  x: -2 < x < 0.25 }
{  y: -2 < y < 2    }
{  and Lyapunov exponet for each x { white}

uses crt,graph,
{ modul niestandardowy }
bmpM, {screenCopy}
Grafm;
var xe,xemax,xe0,yemax,i1,i2:integer;
yer,y,x,w,dx,lap:real;

const xmin=-2;         { wspolczynnik   funkcji fx(y) }
xmax=0.25;
ymax=2;
ymin=-2;
i1max=100;            { liczba iteracji }
i2max=20;
lapmax=10;
lapmin=-10;

function wielomian2st(y,x:real) :real;
begin
wielomian2st:=y*y+x;
end;  { wielomian2st }

procedure wstep;
begin
opengraf;
randomize;            { przygotowanie generatora liczb losowych }
xemax:=getmaxx;              { liczba pixeli }
yemax:=getmaxy;
w:=(yemax+1)/(ymax-ymin);
dx:=(xmax-xmin)/(xemax+1);
end;

begin {cialo}
wstep;
for xe:=xemax downTo 0 do
begin {xe}
x:=xmin+xe*dx;     { liniowe skalowanie x=a*xe+b }
i1:=0;
i2:=0;
lap:=0;
y:=random;        { losowy wybor    y0 : 0<y0<1 }

while (abs(y)<ymax) and (i1<i1max)
do
begin {while i1}
y:=wielomian2st(y,x);
i1:=i1+1;
lap:=lap+ln(abs(2*y)+0.1);
if keypressed then halt;
end; {while i1}

while (i2<i2max) and (abs(y)<ymax)
do
begin   {while i2}
y:=wielomian2st(y,x);
yer:=(y-ymin)*w;         { skalowanie }
putpixel(xe,yemax-round(yer),blue); { diagram bifurkacyjny }
i2:=i2+1;
lap:=lap+ln(abs(2*y)+0.1);
if keypressed then halt;
end; {while i2}

lap:=lap/(i1max+i2max);
yer:=(lap-lapmin)*(yemax+1)/(lapmax-lapmin);
putpixel(xe,yemax-round(yer),white);         { wsp Lapunowa }
putpixel(xe,yemax-round(-ymin*w),red);       { y=0 }
putpixel(xe,yemax-round((1-ymin)*w),green);  { y=1}

end; {xe}

{..... os 0Y .......................................................}
setcolor(red);
xe0:=round((0-Xmin)/dx);     {xe0= xe : x=0 }
line(xe0,0,xe0,yemax);
SetColor(red);
OutTextXY(XeMax-50,yemax-round((0-ymin)*w)+10,'y=0 ');
SetColor(blue);
OutTextXY(XeMax-50,yemax-round((1-ymin)*w)+10,'y=1');
{....................................................................}
screenCopy('screen',640,480);
{}
repeat until keypressed;
closegraph;

end.