Last modified on 12 July 2014, at 14:57

Fractals/Iterations in the complex plane/parabolic

"Most programs for computing Julia sets work well when the underlying dynamics is hyperbolic but experience an exponential slowdown in the parabolic case." ( Mark Braverman )[1]

In other words it means that one can need days for making a good picture of parabolic Julia set with standard / naive algorithms.

There are 2 problems here :

  • slow or lazy dynamics ( in the neighbourhood of a parabolic fixed point )
  • some parts are very thin ( hard to find using standard plane scanning)

PlanesEdit

Dynamic planeEdit

Dynamic plane = complex z-plane  \mathbb{C}  = J_f \cup F_f  :

  • Julia set  J_f  \subset \mathbb{C}  is a common boundary : J_f\, = \partial A_f(p) =\partial  A_{f}(\infty)
  • Fatou set  F_f  \subset \mathbb{C}
    • exterior of Julia set = basin of attraction to infinity : A_{f}(\infty) \  \overset{\underset{\mathrm{def}}{}}{=} \  \{ z \in  \mathbb{C}  : f^{(k)} (z)  \to  \infty\  as\  k \to \infty \}.
    • interior of Julia set = basin of attraction of finite, parabolic fixed point p : A_f(p) \  \overset{\underset{\mathrm{def}}{}}{=} \  \{ z \in  \mathbb{C}  : f^{(k)} (z)  \to  p\  as\  k \to \infty \}.
      • immediate basin = sum of componets which have parabolic fixed point p on it's boundary  ; the immediate parabolic basin of p is the union of periodic connected components of the parabolic basin.
        • attracting Lea-Fatou flower = sum of n attracting petals = sum of 2*n attracting sepals
          • petal = part of the flower. Each petal contains 2 sepals,
            • sepals ( Let 1 be an invariant curve in the first quadrant and L 1 the region enclosed by 1 ∪ {0}, called a sepal. ) [2]

 \mathbb{C} \supset F(f) \supset A_{f}(p)


See also :

  • Filled Julia set[3]  K_f

Key wordsEdit

  • parabolic chessboard
  • parabolic implosion
  • germ[4][5] [6]
    • germ of the function : Taylor expansion of the function
  • multiplicity[7]
  • Julia-Lavaurs sets
  • flower / petal / sepal
  • The Leau-Fatou flower theorem[8]
  • The horn map
  • Blaschke product
  • Inou and Shishikura's near parabolic renormalization
  • complex polynomial vector field [9]

NumbersEdit

  • "a positive integer ν, the parabolic degeneracy with the following property: there are νq attracting petals and νq repelling petals, which alternate cyclically around the fixed point." [10]
  • combinatorial rotation number


Ecalle cilinderEdit

Ecalle cylinders[11] or Ecalle-Voronin cylinders ( by Jean Ecalle [12])

"... the quotient of a petal P under the equivalence relation identifying z and f (z) if both z and f (z) belong to P. This quotient manifold is called the Ecalle cilinder, and it is conformally isomorphic to the infinite cylinder C/Z"[13]

eggbeater dynamicsEdit

Hand Egg beater
Here is real model of what happens in parabolic case
It is a dynamic plane for fc(z)=z^2 + 1/4. It is zoom around parabolic fixed point z=0.5. Orbits of some points inside Julia set are shown (white points)
Contunuus model of dynamics inside a 2 petals flower - dipol
Model of dynamics inside a 4 petals flower - quadrupole

Physical model : the behaviour of cake when one uses eggbeater.

The mathematical model : a 2D vector field with 2 centers ( second-order degenerate points ) [14][15]


The field is spinning about the centers, but does not appear to be diverging.

Fatou coordinateEdit

Fatou coordinate

germEdit

  • z+z^2
  • z+z^3
  • z+z^{k+1}
  • z+a_{k+1}z^{k+1}
  • z+a_{k+1}z^{k+1}

PetalEdit

repelling petals around fixed point and its preimages

There is no unified definition of petals.

Petal of a flower can be :

  • attracting / repelling
  • small/alfa/big/ ( small attracting petals do not ovelap with repelling petals, but big do)

Each petal is invariant under f^period. In other words it is mapped to itself by f^period.


Attracting petal P is a :

  • Each petal is invariant under f^n . In other words it is mapped to itself by f^n : f^n(\overline{P} ) \subset P \cup \left\{ p \right\}
  • domain (topological disc ) containing :
    • parabolic periodic point p in its boundary \overline{P} \ni \left\{ p \right\} ( precisely in its root , which is a coomon points of all attracting and repelling petals = center of the Lea-Fatou flower)
    • critical point or it's n=period images on the other side ( only small ?? )
  • trap which captures any orbit tending to parabolic point [16]
  • set contained inside component of filled-in Julia set. The attracting petals of parabolic fixed point are contained in it's basin of attraction


Petals P_j are symmetric with respect to the d-1 directions :

 arg(z) = \frac{2 \Pi l}{d - 1}

where :

  • d is (to do)
  • l is from 0 to d-2

Petals can have different size.

If \lambda^n = 1 then Julia set should approach parabolic periodic point in n directions, between n petals. [17]

0/1Edit

How the target set is changing along an internal ray 0

Cpp code by Wolf Jung see function parabolic from file mndlbrot.cpp ( program mandel ) [18][19]

To see effect :

  • run Mandel
  • (on parameter plane ) find parabolic point for angle 0, which is c=0.25. To do it use key c, in window input 0 and return.

C code :

  // in function uint mndlbrot::esctime(double x, double y)
  if (b == 0.0 && !drawmode && sign < 0
      && (a == 0.25 || a == -0.75)) return parabolic(x, y);
 // uint mndlbrot::parabolic(double x, double y)
 if (Zx>=0 && Zx <= 0.5 && (Zy > 0 ? Zy : -Zy)<= 0.5 - Zx) 
            { if (Zy>0) data[i]=200; // show petal
                     else data[i]=150;}

Gnuplot code :

reset
f(x,y)=  x>=0 && x<=0.5 &&  (y > 0 ? y : -y) <= 0.5 - x
unset colorbox
set isosample 300, 300
set xlabel 'x'
set ylabel 'y'
set sample 300
set pm3d map
splot [-2:2] [-2:2] f(x,y)

1/2Edit

Cpp code by Wolf Jung see function parabolic from file mndlbrot.cpp ( program mandel ) [20] To see effect :

  • run Mandel
  • (on parameter plane ) find parabolic point for angle 1/2, which is c=-0.75. To do it use key c, in window input 0 and return.

C code :

  // in function uint mndlbrot::esctime(double x, double y)
  if (b == 0.0 && !drawmode && sign < 0
      && (a == 0.25 || a == -0.75)) return parabolic(x, y);
 // uint mndlbrot::parabolic(double x, double y)
  if (A < 0 && x >= -0.5 && x <= 0 && (y > 0 ? y : -y) <= 0.3 + 0.6*x)
      {  if (j & 1) return (y > 0 ? 65282u : 65290u);
         else return (y > 0 ? 65281u : 65289u);
      }

Number of petalsEdit

In parabolic point child period coincides with parent period

For quadratic polynomials :


Multiplicity = ParentPeriod + ChildPeriod

NumberOfPetals = multiplicity - ParentPeriod

It is because in parabolic case fixed point coincidence with periodic cycle. Length of cycle ( child period) is equal to number of petals


For other polynomial maps :

f(z) number of petals explanation
z^d+z d-1 for z^d+z=z point z=0 has multiplicity d
z^d-z d+2 (?)for f^2(z) a root z=0 has multiplicity d+3

For f(z)= -z+z^(p+1) parabolic flower has :

  • 2p petals for p odd
  • p petals for p even [21]

... ( to do )

SepalEdit

A sepal is the intersection of an attracting and repelling petal.

FlowerEdit

Lea-Fatu flower
Flower with four petals and parabolic point in the center
Critical orbit for internal angle 1/5 showing 5 attracting directions

Sum of all petals creates a flower with center at parabolic periodic point.[22]

"... an attracting petal is a set of points in a sufficient small disk around the periodic point whose forward orbits always remain in the disk under powers of return map. " ( W P Thurston : On the geometry and dynamics of Iterated rational maps)

Parabolic chessboardEdit

Parabolic chessboard = parabolic checkerboard


See :

  • Tiles: Tessellation of the Interior of Filled Julia Sets by T Kawahira[23]
  • coloured califlower by A Cheritat [24]

Color points according to :[25]

  • the integer part of Fatou coordinate
  • the sign of imaginary part

CauliflowerEdit

Cauliflower or broccoli :[26]

  • empty ( its interior is empty ) for c outside Mandelbrot set. Julia set is a totally disconnected (
  • filled cauliflower for c=1/4 on boundary of the Mandelbrot set. Julia set is a Jordan curve ( quasi circle).



Pleae note that :

  • size of image differs because of different z-planes.
  • different algorithms are used so colours are hard to compare

Bifurcation of the CauliflowerEdit

How Julia set changes along real axis ( going from c=0 thru c=1/4 and futher ) :


Perturbation of a function f(z) by complex \epsilon :

g(z) = f(z) + \epsilon

When one add epsilon > 0 ( move along real axis toward + infinity ) there is a bifurcation of parabolic fixed point :

  • attracting fixed point ( epsilon<0 )
  • one parabolic fixed point ( epsilon = 0 )
  • one parabolic fixed point splits up into two conjugate repelling fixed points ( epsilon > 0 )

"If we slightly perturb with epsilon<0 then the parabolic fixed point splits up into two real fixed points on the real axis (one attracting, one repelling). "


See :

  • demo 2 page 9 in program Mandel by Wolf Jung

parabolic implosionEdit

Video on YouTube[27]

Local dynamicsEdit

Local dynamics :

  • in the exterior of Julia set
  • on the Julia set
  • near parabolic fixed point ( inside Julia set )

Near parabolic fixed pointEdit

Orbits near parabolic fixed point and inside Julia set

Why analyze f^p not f ?

Forward orbit of f near parabolic fixed point is composite. It consist of 2 motions :

  • around fixed point
  • toward / away from fixed point

How to compute parabolic c valuesEdit

Description


Parabolic points of period 1 component of Mandelbrot set (parameter plane)
n Internal angle (rotation number) t = 1/n The root point c = parabolic parameter Two external angles of parameter rays landing on the root point c (1/(2^n+1); 2/(2^n+1) fixed point z_{\alpha} external angles of dynamic rays landing on fixed point z_{\alpha}
1 1/1 0.25 (0/1 ; 1/1) 0.5 (0/1 = 1/1)
2 1/2 -0.75 (1/3; 2/3) -0.5 (1/3; 2/3)
3 1/3 0.64951905283833*%i-0.125 (1/7; 2/7) 0.43301270189222*%i-0.25 (1/7; 2/7; 3/7)
4 1/4 0.5*%i+0.25 (1/15; 2/15) 0.5*%i (1/15; 2/15; 4/15; 8/15)
5 1/5 0.32858194507446*%i+0.35676274578121 (1/31; 2/31) 0.47552825814758*%i+0.15450849718747 (1/31; 2/31; 4/31; 8/31; 16/31)
6 1/6 0.21650635094611*%i+0.375 (1/63; 2/63) 0.43301270189222*%i+0.25 (1/63; 2/63; 4/63; 8/63; 16/63; 32/63)
7 1/7 0.14718376318856*%i+0.36737513441845 (1/127; 2/127) 0.39091574123401*%i+0.31174490092937 (1/127; 2/127, 4/127; 8/127; 16/127; 32/127, 64/127)
8 1/8 0.10355339059327*%i+0.35355339059327 0.35355339059327*%i+0.35355339059327
9 1/9 0.075191866590218*%i+0.33961017714276 0.32139380484327*%i+0.38302222155949
10 1/10 0.056128497072448*%i+0.32725424859374 0.29389262614624*%i+0.40450849718747

For internal angle n/p parabolic period p cycle consist of one z-point with multiplicity p[28] and multiplier = 1.0 . This point z is equal to fixed point z_{alfa}


Period 1Edit

One can easily compute boundary point c

 c = c_x + c_y*i

of period 1 hyperbolic component ( main cardioid) for given internal angle ( rotation number) t using this cpp code by Wolf Jung[29]

t *= (2*PI); // from turns to radians
cx = 0.5*cos(t) - 0.25*cos(2*t); 
cy = 0.5*sin(t) - 0.25*sin(2*t); 

or this Maxima CAS code :

 
/* conformal map  from circle to cardioid ( boundary
 of period 1 component of Mandelbrot set */
F(w):=w/2-w*w/4;

/* 
circle D={w:abs(w)=1 } where w=l(t,r) 
t is angle in turns ; 1 turn = 360 degree = 2*Pi radians 
r is a radius 
*/
ToCircle(t,r):=r*%e^(%i*t*2*%pi);

GiveC(angle,radius):=
(
 [w],
 /* point of  unit circle   w:l(internalAngle,internalRadius); */
 w:ToCircle(angle,radius),  /* point of circle */
 float(rectform(F(w)))    /* point on boundary of period 1 component of Mandelbrot set */
)$

compile(all)$

/* ---------- global constants & var ---------------------------*/
Numerator :1;
DenominatorMax :10;
InternalRadius:1;

/* --------- main -------------- */
for Denominator:1 thru DenominatorMax step 1 do
(
 InternalAngle: Numerator/Denominator,
 c: GiveC(InternalAngle,InternalRadius),
 display(Denominator),
 display(c),
  /* compute fixed point */
 alfa:float(rectform((1-sqrt(1-4*c))/2)), /* alfa fixed point */
 display(alfa)
 )$


Period 2Edit

// cpp code by W Jung http://www.mndynamics.com

t *= (2*PI);  // from turns to radians
cx = 0.25*cos(t) - 1.0;
cy = 0.25*sin(t);  


Periods 1-6Edit

/* 


batch file for Maxima CAS 
computing bifurcation points for period 1-6

 Formulae for cycles in the Mandelbrot set II
Stephenson, John; Ridgway, Douglas T.
Physica A, Volume 190, Issue 1-2, p. 104-116.
*/

kill(all);
remvalue(all);


start:elapsed_run_time ();

/* ------------ functions ----------------------*/

/* exponential for of complex number with angle in turns */
 /* "exponential form prevents allroots from working", code by Robert P. Munafo */ 

GivePoint(Radius,t):=rectform(ev(Radius*%e^(%i*t*2*%pi), numer))$ /* gives point of unit circle for angle t in turns */

GiveCirclePoint(t):=rectform(ev(%e^(%i*t*2*%pi), numer))$ /* gives point of unit circle for angle t in turns Radius = 1 */

/* gives a list of iMax points of unit circle */
GiveCirclePoints(iMax):=block(
 [circle_angles,CirclePoints],
 CirclePoints:[],
 circle_angles:makelist(i/iMax,i,0,iMax),
 for t in circle_angles do CirclePoints:cons(GivePoint(1,t),CirclePoints),
 return(CirclePoints) /* multipliers */
)$

/* http://commons.wikimedia.org/wiki/File:Mandelbrot_set_Components.jpg 
Boundary equation  b_n(c,P)=0 
    defines relations between hyperbolic components and unit circle for given period n ,
    allows computation of exact coordinates of hyperbolic componenets.

b_n(w,c), is boundary polynomial ( implicit function of 2 variables ).

*/

GiveBoundaryEq(P,n):=
block(
 if n=1 then return(c + P^2 - P),
 if n=2 then return(- c + P - 1),
 if n=3 then return(c^3 + 2*c^2 - (P-1)*c + (P-1)^2),
 if n=4 then return( c^6 + 3*c^5 + (P+3)* c^4 + (P+3)* c^3  - (P+2)*(P-1)*c^2 - (P-1)^3),
 if n=5 then return(c^15 + 8*c^14 + 28*c^13 + (P + 60)*c^12 + (7*P + 94)*c^11 + 
  (3*P^2 + 20*P + 116)*c^10 + (11*P^2 + 33*P + 114)*c^9 + (6*P^2 + 40*P + 94)*c^8 + 
  (2*P^3 - 20*P^2 + 37*P + 69)*c^7 + (3*P - 11)*(3*P^2 - 3*P - 4)*c^6 + (P - 1)*(3*P^3 + 20*P^2 - 33*P - 26)*c^5 +
  (3*P^2 + 27*P + 14)*(P - 1)^2*c^4 - (6*P + 5)*(P - 1)^3*c^3 + (P + 2)*(P - 1)^4*c^2 - c*(P - 1)^5  + (P - 1)^6),
if n=6 then return( c^27+
13*c^26+
78*c^25+
(293 - P)*c^24+
(792 - 10*P)*c^23+
(1672 - 41*P)*c^22+
(2892 - 84*P - 4*P^2)*c^21+
(4219 - 60*P - 30*P^2)*c^20+
(5313 + 155*P - 80*P^2)*c^19+
(5892 + 642*P - 57*P^2 + 4*P^3)*c^18+
(5843 + 1347*P + 195*P^2 + 22*P^3)*c^17+
(5258 + 2036*P + 734*P^2 + 22*P^3)*c^16+
(4346 + 2455*P + 1441*P^2 - 112*P^3 + 6*P^4)*c^15 + 
(3310 + 2522*P + 1941*P^2 - 441*P^3 + 20*P^4)*c^14 + 
(2331 + 2272*P + 1881*P^2 - 853*P^3 - 15*P^4)*c^13 + 
(1525 + 1842*P + 1344*P^2 - 1157*P^3 - 124*P^4 - 6*P^5)*c^12 + 
(927 + 1385*P + 570*P^2 - 1143*P^3 - 189*P^4 - 14*P^5)*c^11 + 
(536 + 923*P - 126*P^2 - 774*P^3 - 186*P^4 + 11*P^5)*c^10 + 
(298 + 834*P + 367*P^2 + 45*P^3 - 4*P^4 + 4*P^5)*(1-P)*c^9 + 
(155 + 445*P - 148*P^2 - 109*P^3 + 103*P^4 + 2*P^5)*(1-P)*c^8 + 
2*(38 + 142*P - 37*P^2 - 62*P^3 + 17*P^4)*(1-P)^2*c^7 + 
(35 + 166*P + 18*P^2 - 75*P^3 - 4*P^4)*((1-P)^3)*c^6 + 
(17 + 94*P + 62*P^2 + 2*P^3)*((1-P)^4)*c^5 + 
(7 + 34*P + 8*P^2)*((1-P)^5)*c^4 + 
(3 + 10*P + P^2)*((1-P)^6)*c^3 + 
(1 + P)*((1-P)^7)*c^2 +
-c*((1-P)^8) + (1-P)^9)
)$


/* gives a list of points c on boundaries on all components for give period */
GiveBoundaryPoints(period,Circle_Points):=block(
 [Boundary,P,eq,roots],
  Boundary:[],
 for m in Circle_Points do (/* map from reference plane to parameter plane */
  P:m/2^period,
  eq:GiveBoundaryEq(P,period), /* Boundary equation  b_n(c,P)=0  */
  roots:bfallroots(%i*eq),
  roots:map(rhs,roots),
  for root in roots do Boundary:cons(root,Boundary)),
  return(Boundary)
)$


/* divide llist of roots to 3 sublists = 3  components */
/* ---- boundaries of period 3 components 
period:3$
Boundary3Left:[]$
Boundary3Up:[]$
Boundary3Down:[]$

Radius:1;

 for m in CirclePoints do (
  P:m/2^period,
  eq:GiveBoundaryEq(P,period),
  roots:bfallroots(%i*eq),
  roots:map(rhs,roots),
  for root in roots do 
     (
       if realpart(root)<-1  then Boundary3Left:cons(root,Boundary3Left),
       if (realpart(root)>-1 and imagpart(root)>0.5) 
            then Boundary3Up:cons(root,Boundary3Up),
       if (realpart(root)>-1 and imagpart(root)<0.5) 
            then Boundary3Down:cons(root,Boundary3Down)
               
     )

)$
--------- */


/* gives a list of parabolic points for given : period and internal angle */
GiveParabolicPoints(period,t):=block
(
 [m,ParabolicPoints,P,eq,roots],
 m: GiveCirclePoint(t), /* root of unit circle, Radius=1, angle t=0 */
 ParabolicPoints:[],
 /* map from reference plane to parameter plane */
 P:m/2^period,
 eq:GiveBoundaryEq(P,period), /* Boundary equation  b_n(c,P)=0  */
 roots:bfallroots(%i*eq),
 roots:map(rhs,roots),
 for root in roots do ParabolicPoints:cons(float(root),ParabolicPoints),
 return(ParabolicPoints) 

)$


compile(all)$



/* ------------- constant values ----------------------*/

fpprec:16; 





/* ------------unit circle on a w-plane -----------------------------------------*/
a:GiveParabolicPoints(6,1/3);
a$



How to draw parabolic Julia setEdit

All points of interior of filled Julia set tend to one periodic orbit ( or fixed point ). This point is in Julia set and is weakly attracting. [30] One can analyse only behevior near parabolic fixed point. It can be done using critical orbits.

There are two cases here : easy and hard.

If the Julia set near parabolic fixed point is like n-th arm star ( not twisted) then one can simply check argument of of zn, relative to the fixed point. See for example z+z^5. This is an easy case.

In the hard case Julia set is twisted around fixed.


Estimation from exteriorEdit

Escape timeEdit

Description

Long iteration methodEdit

Long iteration method [31]

Dynamic raysEdit

Parabolic Julia set for internal angle 1 over 15 - made with use of external rays as a aproximation of Julia set near alfa fixed point

One can use periodic dynamic rays landing on parabolic fixed point to find narrow parts of exterior.

Let's check how many backward iterations needs point on periodic ray with external radius = 4 to reach distance 0.003 from parabolic fixed point :

period Inverse iterations time
1 340 0m0.021s
2 55 573 0m5.517s
3 8 084 815 13m13.800s
4 1 059 839 105 1724m28.990s

One can use only argument of point z of external rays and its distance to alfa fixed point. ( see code from image) It works for periods up to 15 ( maybe more ... )

Estimation from interiorEdit

Julia set is a boundary of filled-in Julia set Kc.

  • find points of interior of Kc
  • find boundary of interior of Kc using edge detection

If components of interior are lying very close to each other then find components using :[32]

color = LastIteration % period

For parabolic components between parent and child component :[33]

periodOfChild = denominator*periodOfParent  
color = iLastIteration % periodOfChild 

where denominator is a denominator of internal angle of parent comonent of Mandelbrot set.

AngleEdit

"if the iterate zn of tends to a fixed parabolic point, then the initial seed z0 is classified according to the argument of zn−z0, the classification being provided by the flower theorem " ( Mark McClure [34])

Attraction timeEdit

Various types of dynamics

Interior of filled Julia set consist of components. All comonents are preperiodic, some of them are periodic ( immediate basin of attraction).

In other words :

  • one iteration moves z to another component ( and whole component to another component)
  • all point of components have the same attraction time ( number of iteration needed to reach target set around attractor)

It is possible to use it to color components. Because in parabolic case attractor is weak ( weakly attracting) it needs a lot of iterations for some points to reach it.

Here are some example values :

 iWidth  = 1001 // width of image in pixels
 PixelWidth  = 0.003996  
 AR  = 0.003996 // Radius around attractor
 denominator  = 1 ; Cx  = 0.250000000000000; Cy  = 0.000000000000000 ax  = 0.500000000000000; ay  = 0.000000000000000   
 denominator  = 2 ; Cx  = -0.750000000000000; Cy  = 0.000000000000000 ax  = -0.500000000000000; ay  = 0.000000000000000   
 denominator  = 3 ; Cx  = -0.125000000000000; Cy  = 0.649519052838329 ax  = -0.250000000000000; ay  = 0.433012701892219  
 denominator  = 4 ; Cx  = 0.250000000000000; Cy  = 0.500000000000000 ax  = 0.000000000000000; ay  = 0.500000000000000   
 denominator  = 5 ; Cx  = 0.356762745781211; Cy  = 0.328581945074458 ax  = 0.154508497187474; ay  = 0.475528258147577   
 denominator  = 6 ; Cx  = 0.375000000000000; Cy  = 0.216506350946110 ax  = 0.250000000000000; ay  = 0.433012701892219    
 
 denominator  = 1 ;   i =               243.000000 
 denominator  = 2 ;   i =            31 171.000000 
 denominator  = 3 ;   i =         3 400 099.000000 
 denominator  = 4 ;   i =       333 293 206.000000 
 denominator  = 5 ;   i =    29 519 565 177.000000 
 denominator  = 6 ;   i = 2 384 557 783 634.000000 

where :

C = Cx + Cy*i 
a = ax + ay*i // fixed point alpha
i // number of iterations after which critical point z=0.0 reaches disc around fixed point alpha with radius AR
denominator of internal angle ( in turns )
internal angle =  1/denominator

Note that attraction time i is proportional to denominator.

Attraction time for various denominators

Now you see what means weakly attracting.

One can :

  • use brutal force method ( Attracting radius < pixelSize; iteration Max big enough to let all points from interior reach target set; long time or fast computer )
  • find better method (:-)) if time is to long for you

Interior distance estimationEdit

TrapEdit

Estimation from interior and exteriorEdit

Julia set is a common boundary of filled-in Julia set and basin of attraction of infinity.

  • find points of interior/components of Kc
  • find escaping points
  • find boundary points using Sobel filter

It works for denominator up to 4.

Inverse iteration of repelling pointsEdit

Inverse iteration of alfa fixed point. It works good only for cuting point ( where external rays land). Other points still are not hitten.


Bof61Edit

GalleryEdit



For other polynomial maps see here

See alsoEdit

ReferencesEdit

  1. Mark Braverman : On efficient computation of parabolic Julia sets
  2. Note on dynamically stable perturbations of parabolics by Tomoki Kawahira
  3. Filled Julia set in wikipedia
  4. wikipedia : Germ(mathematics)
  5. Fixed points of diffeomorphisms, singularities of vector fields and epsilon-neighborhoods of their orbits by Maja Resman
  6. The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point by Colin Christopher, Christiane Rousseau
  7. wikipedia : Multiplicity (mathematics)
  8. Dynamics of surface homeomorphisms Topological versions of the Leau-Fatou flower theorem and the stable manifold theorem by Le Roux, F
  9. The Dynamics of Complex Polynomial Vector Fields in C by Kealey Dias
  10. LIMITS OF DEGENERATE PARABOLIC QUADRATIC RATIONAL MAPS by XAVIER BUFF, JEAN ECALLE, AND ADAM EPSTEIN
  11. Théorie des invariants holomorphes. Thèse d'Etat, Orsay, March 1974
  12. Jean Ecalle home page
  13. mappings by Luna Lomonaco
  14. MODULUS OF ANALYTIC CLASSIFICATION FOR UNFOLDINGS OF GENERIC PARABOLIC DIFFEOMORPHISMSby P. Mardesic, R. Roussarie¤ and C. Rousseau
  15. mathoverflow questions : the functional equation ffxxfx2
  16. PARABOLIC IMPLOSION A MINI-COURSE by ARNAUD CHERITAT
  17. BOF, page 39
  18. commons:Category:Fractals_created_with_Mandel
  19. Program Mandel by Wolf Jung
  20. Program Mandel by Wolf Jung
  21. A Lösungen zu den Übungenn by Michael Becker
  22. wikipedia : Rose (topology)
  23. tiles by T Kawahira
  24. Coloured califlower by A Cheritat
  25. Applications of near-parabolic renormalization by Mitsuhiro Shishikura
  26. cauliflower at MuEncy by Robert Munafo
  27. Circle Implodes Into Flames - video by sinflrobot
  28. wikipedia : Multiplicity in mathematics
  29. Mandel: software for real and complex dynamics by Wolf Jung
  30. Local dynamics at a fixed point by Evgeny Demidov
  31. Parabolic Julia Sets are Polynomial Time Computable Mark Braverman
  32. The fixed points and periodic orbits by Evgeny Demidov
  33. Src code of c program for drawing parabolic Julia set
  34. stackexchange questions : what-is-the-shape-of-parabolic-critical-orbit
  35. planetmath : San Marco fractal
  36. wikipedia : Douady rabbit
  37. planetmath : San Marco fractal
  38. Image : Nonstandard Parabolic by Cheritat
  39. Julia set of parabolic case in Maxima CAS