Last modified on 30 July 2010, at 17:34

Engineering Tables/Table of Derivatives

Table of Derivatives
{d \over dx} c = 0
{d \over dx} x = 1
{d \over dx} cx = c
{d \over dx} |x| = {x \over |x|} = \sgn x,\qquad x \ne 0
{d \over dx} x^c = cx^{c-1} where both xc and cxc-1 are defined.
{d \over dx} \left({1 \over x}\right) = {d \over dx} \left(x^{-1}\right) = -x^{-2} = -{1 \over x^2}
{d \over dx} \left({1 \over x^c}\right) = {d \over dx} \left(x^{-c}\right) = -{c \over x^{c+1}}
{d \over dx} \sqrt{x} = {d \over dx} x^{1\over 2} = {1 \over 2} x^{-{1\over 2}}  = {1 \over 2 \sqrt{x}} x > 0
{d \over dx} c^x = {c^x \ln c} c > 0</math>
{d \over dx} e^x = e^x
{d \over dx} \log_c x = {1 \over x \ln c} c > 0,  c \ne 1
{d \over dx} \ln x = {1 \over x}
{d \over dx} \sin x = \cos x
{d \over dx} \cos x = -\sin x
{d \over dx} \tan x = \sec^2 x
{d \over dx} \sec x = \tan x \sec x
{d \over dx} \cot x = -\csc^2 x
{d \over dx} \csc x = -\csc x \cot x
{d \over dx} \arcsin x = { 1 \over \sqrt{1 - x^2}}
{d \over dx} \arccos x = {-1 \over \sqrt{1 - x^2}}
{d \over dx} \arctan x = { 1 \over 1 + x^2}
{d \over dx} \arcsec x = { 1 \over |x|\sqrt{x^2 - 1}}
{d \over dx} \arccot x = {-1 \over 1 + x^2}
{d \over dx} \arccsc x = {-1 \over |x|\sqrt{x^2 - 1}}
{d \over dx} \sinh x = \cosh x
{d \over dx} \cosh x = \sinh x
{d \over dx} \tanh x = \mbox{sech}^2 x
{d \over dx} \mbox{sech} x = - \tanh x \mbox{sech} x
{d \over dx} \mbox{coth} x = - \mbox{csch}^2 x
{d \over dx} \mbox{csch} x = - \mbox{coth} x \mbox{csch} x
{d \over dx} \mbox{arcsinh} x = { 1 \over \sqrt{x^2 + 1}}
{d \over dx} \mbox{arccosh} x = { 1 \over \sqrt{x^2 - 1}}
{d \over dx} \mbox{arctanh} x = { 1 \over 1 - x^2}
{d \over dx} \mbox{arcsech} x = { 1 \over x\sqrt{1 - x^2}}
{d \over dx} \mbox{arccoth} x = { 1 \over 1 - x^2}
{d \over dx} \mbox{arccsch} x = {-1 \over |x|\sqrt{1 + x^2}}