# Cg Programming/Unity/Translucent Surfaces

Leaves lit from both sides: note that the missing specular reflection results in a more saturated green of the backlit leaves.

This tutorial covers translucent surfaces.

It is one of several tutorials about lighting that go beyond the Phong reflection model. However, it is based on per-pixel lighting with the Phong reflection model as described in Section “Smooth Specular Highlights”. If you haven't read that tutorial yet, you should read it first.

The Phong reflection model doesn't take translucency into account, i.e. the possibility that light is transmitted through a material. This tutorial is about translucent surfaces, i.e. surfaces that allow light to transmit from one face to the other, e.g. paper, clothes, plastic films, or leaves.

For translucent illumination, the vector V to the viewer and the vector L to the light source are on opposite sides.

### Diffuse TranslucencyEdit

We will distinguish between two kinds of light transmission: diffuse translucency and forward-scattered translucency, which correspond to the diffuse and specular terms in the Phong reflection model. Diffuse translucency is a diffuse transmission of light analogously to the diffuse reflection term in the Phong reflection model (see Section “Diffuse Reflection”): it only depends on the dot product of the surface normal vector and the direction to the light source — except that we use the negative surface normal vector since the light source is on the backside, thus the equation for the diffuse translucent illumination is:

$I_\text{diffuse trans.} = I_\text{incoming}\,k_\text{diffuse trans.} \max(0,\mathbf{L}\cdot(- \mathbf{N}))$

This is the most common illumination for many translucent surfaces, e.g. paper and leaves.

### Forward-Scattered TranslucencyEdit

Some translucent surfaces (e.g. plastic films) are almost transparent and allow light to shine through the surface almost directly but with some forward scattering; i.e., one can see light sources through the surface but the image is somewhat blurred. This is similar to the specular term of the Phong reflection model (see Section “Specular Highlights” for the equation) except that we replace the reflected light direction R by the negative light direction -L and the exponent $n_\text{shininess}$ corresponds now to the sharpness of the forward-scattered light:

$I_\text{forward trans.} = I_\text{incoming}\,k_\text{forward trans.} \max(0, \mathbf{-L}\cdot \mathbf{V})^{n_\text{sharpness}}$

Of course, this model of forward-scattered translucency is not accurate at all but it allows us to fake the effect and tweak the parameters.

### ImplementationEdit

The following implementation is based on Section “Smooth Specular Highlights”, which presents per-pixel lighting with the Phong reflection model. The implementation allows for rendering backfaces and flips the surface normal vector in this case using the built-in Cg function faceforward(n, v, ng) which returns n if dot(v,ng)<0 and -n otherwise. This method often fails at silhouettes, which results in incorrect lighting for some pixels. An improved version would use different passes and colors for the frontfaces and the backfaces as in Section “Two-Sided Smooth Surfaces”.

In addition to the terms of the Phong reflection model, we also compute illumination by diffuse translucency and forward-scattered translucency with this code:

            float3 diffuseTranslucency =
attenuation * _LightColor0.rgb
* _DiffuseTranslucentColor.rgb
* max(0.0, dot(lightDirection, -normalDirection));

float3 forwardTranslucency;
if (dot(normalDirection, lightDirection) > 0.0)
// light source on the wrong side?
{
forwardTranslucency = float3(0.0, 0.0, 0.0);
// no forward-scattered translucency
}
else // light source on the right side
{
forwardTranslucency = attenuation * _LightColor0.rgb
* _ForwardTranslucentColor.rgb * pow(max(0.0,
dot(-lightDirection, viewDirection)), _Sharpness);
}


The complete shader code defines the shader properties for the material constants and adds another pass for additional light sources with additive blending but without the ambient lighting:

Shader "Cg translucent surfaces" {
Properties {
_Color ("Diffuse Material Color", Color) = (1,1,1,1)
_SpecColor ("Specular Material Color", Color) = (1,1,1,1)
_Shininess ("Shininess", Float) = 10
_DiffuseTranslucentColor ("Diffuse Translucent Color", Color)
= (1,1,1,1)
_ForwardTranslucentColor ("Forward Translucent Color", Color)
= (1,1,1,1)
_Sharpness ("Sharpness", Float) = 10
}
Pass {
Tags { "LightMode" = "ForwardBase" }
// pass for ambient light and first light source
Cull Off // show frontfaces and backfaces

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
uniform float4 _LightColor0;
// color of light source (from "Lighting.cginc")

// User-specified properties
uniform float4 _Color;
uniform float4 _SpecColor;
uniform float _Shininess;
uniform float4 _DiffuseTranslucentColor;
uniform float4 _ForwardTranslucentColor;
uniform float _Sharpness;

struct vertexInput {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct vertexOutput {
float4 pos : SV_POSITION;
float4 posWorld : TEXCOORD0;
float3 normalDir : TEXCOORD1;
};

vertexOutput vert(vertexInput input)
{
vertexOutput output;

float4x4 modelMatrix = _Object2World;
float4x4 modelMatrixInverse = _World2Object;
// multiplication with unity_Scale.w is unnecessary
// because we normalize transformed vectors

output.posWorld = mul(modelMatrix, input.vertex);
output.normalDir = normalize(
mul(float4(input.normal, 0.0), modelMatrixInverse).xyz);
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);
return output;
}

float4 frag(vertexOutput input) : COLOR
{
float3 normalDirection = normalize(input.normalDir);
float3 viewDirection = normalize(
_WorldSpaceCameraPos - input.posWorld.xyz);

normalDirection = faceforward(normalDirection,
-viewDirection, normalDirection);
// flip normal if dot(-viewDirection, normalDirection)>0

float3 lightDirection;
float attenuation;

if (0.0 == _WorldSpaceLightPos0.w) // directional light?
{
attenuation = 1.0; // no attenuation
lightDirection = normalize(_WorldSpaceLightPos0.xyz);
}
else // point or spot light
{
float3 vertexToLightSource =
_WorldSpaceLightPos0.xyz - input.posWorld.xyz;
float distance = length(vertexToLightSource);
attenuation = 1.0 / distance; // linear attenuation
lightDirection = normalize(vertexToLightSource);
}

// Computation of the Phong reflection model:

float3 ambientLighting =
UNITY_LIGHTMODEL_AMBIENT.rgb * _Color.rgb;

float3 diffuseReflection =
attenuation * _LightColor0.rgb * _Color.rgb
* max(0.0, dot(normalDirection, lightDirection));

float3 specularReflection;
if (dot(normalDirection, lightDirection) < 0.0)
// light source on the wrong side?
{
specularReflection = float3(0.0, 0.0, 0.0);
// no specular reflection
}
else // light source on the right side
{
specularReflection = attenuation * _LightColor0.rgb
* _SpecColor.rgb * pow(max(0.0, dot(
reflect(-lightDirection, normalDirection),
viewDirection)), _Shininess);
}

// Computation of the translucent illumination:

float3 diffuseTranslucency =
attenuation * _LightColor0.rgb
* _DiffuseTranslucentColor.rgb
* max(0.0, dot(lightDirection, -normalDirection));

float3 forwardTranslucency;
if (dot(normalDirection, lightDirection) > 0.0)
// light source on the wrong side?
{
forwardTranslucency = float3(0.0, 0.0, 0.0);
// no forward-scattered translucency
}
else // light source on the right side
{
forwardTranslucency = attenuation * _LightColor0.rgb
* _ForwardTranslucentColor.rgb * pow(max(0.0,
dot(-lightDirection, viewDirection)), _Sharpness);
}

// Computation of the complete illumination:

return float4(ambientLighting
+ diffuseReflection + specularReflection
+ diffuseTranslucency + forwardTranslucency, 1.0);
}
ENDCG
}

Pass {
Tags { "LightMode" = "ForwardAdd" }
// pass for additional light sources
Cull Off
Blend One One // additive blending

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
uniform float4 _LightColor0;
// color of light source (from "Lighting.cginc")

// User-specified properties
uniform float4 _Color;
uniform float4 _SpecColor;
uniform float _Shininess;
uniform float4 _DiffuseTranslucentColor;
uniform float4 _ForwardTranslucentColor;
uniform float _Sharpness;

struct vertexInput {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct vertexOutput {
float4 pos : SV_POSITION;
float4 posWorld : TEXCOORD0;
float3 normalDir : TEXCOORD1;
};

vertexOutput vert(vertexInput input)
{
vertexOutput output;

float4x4 modelMatrix = _Object2World;
float4x4 modelMatrixInverse = _World2Object;
// multiplication with unity_Scale.w is unnecessary
// because we normalize transformed vectors

output.posWorld = mul(modelMatrix, input.vertex);
output.normalDir = normalize(
mul(float4(input.normal, 0.0), modelMatrixInverse).xyz);
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);
return output;
}

float4 frag(vertexOutput input) : COLOR
{
float3 normalDirection = normalize(input.normalDir);
float3 viewDirection = normalize(
_WorldSpaceCameraPos - input.posWorld.xyz);

normalDirection = faceforward(normalDirection,
-viewDirection, normalDirection);
// flip normal if dot(-viewDirection, normalDirection)>0

float3 lightDirection;
float attenuation;

if (0.0 == _WorldSpaceLightPos0.w) // directional light?
{
attenuation = 1.0; // no attenuation
lightDirection = normalize(_WorldSpaceLightPos0.xyz);
}
else // point or spot light
{
float3 vertexToLightSource =
_WorldSpaceLightPos0.xyz - input.posWorld.xyz;
float distance = length(vertexToLightSource);
attenuation = 1.0 / distance; // linear attenuation
lightDirection = normalize(vertexToLightSource);
}

// Computation of the Phong reflection model:

float3 diffuseReflection =
attenuation * _LightColor0.rgb * _Color.rgb
* max(0.0, dot(normalDirection, lightDirection));

float3 specularReflection;
if (dot(normalDirection, lightDirection) < 0.0)
// light source on the wrong side?
{
specularReflection = float3(0.0, 0.0, 0.0);
// no specular reflection
}
else // light source on the right side
{
specularReflection = attenuation * _LightColor0.rgb
* _SpecColor.rgb * pow(max(0.0, dot(
reflect(-lightDirection, normalDirection),
viewDirection)), _Shininess);
}

// Computation of the translucent illumination:

float3 diffuseTranslucency =
attenuation * _LightColor0.rgb
* _DiffuseTranslucentColor.rgb
* max(0.0, dot(lightDirection, -normalDirection));

float3 forwardTranslucency;
if (dot(normalDirection, lightDirection) > 0.0)
// light source on the wrong side?
{
forwardTranslucency = float3(0.0, 0.0, 0.0);
// no forward-scattered translucency
}
else // light source on the right side
{
forwardTranslucency = attenuation * _LightColor0.rgb
* _ForwardTranslucentColor.rgb * pow(max(0.0,
dot(-lightDirection, viewDirection)), _Sharpness);
}

// Computation of the complete illumination:

return float4(diffuseReflection + specularReflection
+ diffuseTranslucency + forwardTranslucency, 1.0);
}
ENDCG
}
}
}


### SummaryEdit

Congratulations! You finished this tutorial on translucent surfaces, which are very common but cannot be modeled by the Phong reflection model. We have covered:

• What translucent surfaces are.
• Which forms of translucency are most common (diffuse translucency and forward-scattered translucency).
• How to implement diffuse and forward-scattered translucency.