Calculus/Differentiation/Basics of Differentiation/Solutions

Find the Derivative by Definition edit

1.  
 
 
2.  
 
 
3.  
 
 
4.  
 
 
5.  
 
 
6.  
 
 
7.  
 
 
8.  
 
 
9.  
 
 

Prove the Constant Rule edit

10. Use the definition of the derivative to prove that for any fixed real number  ,  
 
 

Find the Derivative by Rules edit

Power Rule edit

11.  
 
 
12.  
 
 
13.  
 
 
14.  
 
 
15.  
 
 
16.  
 
 
17.  
 
 
18.  
 
 
19.  
 
 

Product Rule edit

20.  
 
 
21.  
 
 
22.  
 
 
23.  
 
 

Quotient Rule edit

29.  
 
 
30.  
 
 
31.  
 
 
32.  
 
 
33.  
 
 
34.  
 
 
35.  
 
 

Chain Rule edit

43.  
Let  . Then
 
Let  . Then
 
44.  
Let  . Then
 
Let  . Then
 
45.  
Let  . Then
 
Let  . Then
 
46.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
47.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
48.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
49.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
50.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
51.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
52.  
Let  . Then

 
 
 

 
Let  . Then

 
 
 

 
53.  
Let  . Then
 
Let  . Then
 

Exponentials edit

54.  
 
 
55.  
Let  . Then
 
Let  . Then
 
56.  
Let
 
 
 

Then

 

Using the chain rule, we have

 

The individual factor are

 
 
 

So

 
Let
 
 
 

Then

 

Using the chain rule, we have

 

The individual factor are

 
 
 

So

 
57.  
 
 

Logarithms edit

58.  
 
 
47.  
 
 
59.  
Let  . Then
 
Let  . Then
 
60.  
 
 
61.  
 
 

Trigonometric functions edit

62.  
 
 
64.  
 
 

More Differentiation edit

65.  
 
 
66.  
 
 
67.  
Let  . Then

 
 

 
Let  . Then

 
 

 
68.  
 
 
69.  
 
 
70.  
 
 
71.  
 
 
72.  
 
 
73.  
 
 

Implicit Differentiation edit

Use implicit differentiation to find y'

74.  
 

 

 
 

 

 
75.  
 

 
 
 

 
 

 
 
 

 

Logarithmic Differentiation edit

Use logarithmic differentiation to find  :

76.  
 

 

 
 

 

 
77.  
 

 

 
 

 

 
78.  
 

 

 
 

 

 
79.  
 

 

 
 

 

 
80.  
 

 

 
 

 

 

Equation of Tangent Line edit

For each function,  , (a) determine for what values of   the tangent line to   is horizontal and (b) find an equation of the tangent line to   at the given point.

81.  
: 

a)  
b)  

 
 
: 

a)  
b)  

 
 
82.  
: 

a)  
b)  

 
 
: 

a)  
b)  

 
 
83.  
: 

a)  
b)  

 
 
: 

a)  
b)  

 
 
84.  
: 

a)  
b)  

 
 
: 

a)  
b)  

 
 
85.  
: 

a)  
b)  

 
 
: 

a)  
b)  

 
 
86.  
: 

a)  
/ b)  

 
 
: 

a)  
/ b)  

 
 
87. Find an equation of the tangent line to the graph defined by   at the point (1,-1).
 

 
 
 
 

 
 

 
 
 
 

 
88. Find an equation of the tangent line to the graph defined by   at the point (1,0).
 

 
 
 
 

 
 

 
 
 
 

 

Higher Order Derivatives edit

89. What is the second derivative of  ?
 
 
 
 
90. Use induction to prove that the (n+1)th derivative of a n-th order polynomial is 0.
base case: Consider the zeroth-order polynomial,  .  

induction step: Suppose that the n-th derivative of a (n-1)th order polynomial is 0. Consider the n-th order polynomial,  . We can write   where   is a (n-1)th polynomial.

 
base case: Consider the zeroth-order polynomial,  .  

induction step: Suppose that the n-th derivative of a (n-1)th order polynomial is 0. Consider the n-th order polynomial,  . We can write   where   is a (n-1)th polynomial.

 

Advanced Understanding of Derivatives edit

91. Let   be the derivative of  . Prove the derivative of   is  .
Suppose  . Let  .

 

Therefore, if   is the derivative of  , then   is the derivative of  .  
Suppose  . Let  .

 

Therefore, if   is the derivative of  , then   is the derivative of  .  
92. Suppose a continuous function   has three roots on the interval of  . If  , then what is ONE true guarantee of   using
(a) the Intermediate Value Theorem;
(b) Rolle's Theorem;
(c) the Extreme Value Theorem.
These are examples only. More valid solutions may exist.
(a)   is continuous. Ergo, the intermediate value theorem applies. There exists some   such that  , where  .
(b) Rolle's Theorem does not apply for a non-differentiable function.
(c)   is continuous. Ergo, the extreme value theorem applies. There exists a   so that   for all  .
These are examples only. More valid solutions may exist.
(a)   is continuous. Ergo, the intermediate value theorem applies. There exists some   such that  , where  .
(b) Rolle's Theorem does not apply for a non-differentiable function.
(c)   is continuous. Ergo, the extreme value theorem applies. There exists a   so that   for all  .
93. Let  , where   is the inverse of  . Let   be differentiable. What is  ? Else, why can   not be determined?
If  , then  . We can use implicit differentiation.
 
If  , then  . We can use implicit differentiation.
 
94. Let   where   is a constant.

Find a value, if possible, for   that allows each of the following to be true. If not possible, prove that it cannot be done.

(a) The function   is continuous but non-differentiable.
(b) The function   is both continuous and differentiable.
(a)  .
 . However, for  , we find that  , so   makes the function continuous but non-differentiable.

(b) There is no   that allows the function to be differentiable and continuous.

A proof of this is simple.
 
However,
 
To allow the best possible chance, we will let  :
 
For any other  , one will have an infinity on the left-hand sided limit. Therefore, there is no possible   that allows the function to be differentiable and continuous.
(a)  .
 . However, for  , we find that  , so   makes the function continuous but non-differentiable.

(b) There is no   that allows the function to be differentiable and continuous.

A proof of this is simple.
 
However,
 
To allow the best possible chance, we will let  :
 
For any other  , one will have an infinity on the left-hand sided limit. Therefore, there is no possible   that allows the function to be differentiable and continuous.